Вариант № 334

РЕШУ ВПР: Вариант для подготовки 20.

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно. Ответ с по­греш­но­стью вида (1,4  ±  0,2)  Н за­пи­сы­вай­те сле­ду­ю­щим об­ра­зом: 1,40,2.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип Д1 C1 № 670
i

Про­чи­тай­те пе­ре­чень по­ня­тий, с ко­то­ры­ми вы стал­ки­ва­лись в курсе фи­зи­ки:

Фок, звез­да, Карно, асте­ро­ид, Макс­велл, Луна.

Раз­де­ли­те эти по­ня­тия на две груп­пы по вы­бран­но­му вами при­зна­ку. За­пи­ши­те в таб­ли­цу на­зва­ние каж­дой груп­пы и по­ня­тия, вхо­дя­щие в эту груп­пу.



На­зва­ние груп­пы по­ня­тийПе­ре­чень по­ня­тий

Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Тип Д2 № 671
i

Ав­то­мо­биль дви­жет­ся по пря­мой улице. На гра­фи­ке пред­став­ле­на за­ви­си­мость его уско­ре­ния от вре­ме­ни.

Вы­бе­ри­те два утвер­жде­ния, ко­то­рые верно опи­сы­ва­ют дви­же­ние ав­то­мо­би­ля, и за­пи­ши­те но­ме­ра, под ко­то­ры­ми они ука­за­ны.

 

1)  Пер­вые 4 с ав­то­мо­биль дви­жет­ся рав­но­уско­рен­но, на­би­рая ско­рость.

2)  Мак­си­маль­ная ско­рость была до­стиг­ну­та ав­то­мо­би­лем на 4-ой се­кун­де.

3)  За все время дви­же­ния ав­то­мо­биль хотя бы раз дви­гал­ся рав­но­мер­но.

4)  Через 9 с ав­то­мо­биль оста­но­вил­ся.

5)  Через 4 с ав­то­мо­биль по­ехал в дру­гую сто­ро­ну.


Ответ:

3
Тип Д3 C1 № 672
i

Груз, рас­по­ло­жен­ный на столе с бор­ти­ком, за­креп­лен по­мо­щью нити А и тя­нет­ся нитью Б. В какой то мо­мент нить А пе­ре­ре­за­ют. Изоб­ра­зи­те все силы, дей­ству­ю­щие на груз до того, как нить пе­ре­ре­за­ли. Что про­изой­дет с гру­зом после того, как нить пе­ре­ре­жут? Тре­ни­ем пре­не­бречь.

 


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

4

Вставь­те верно слова, они могут по­вто­рять­ся. С не­ко­то­рой вы­со­ты в поле силы тя­же­сти мяч от­пус­ка­ет­ся и летит вер­ти­каль­но вниз, а после удара об ас­фальт уже под­ле­та­ет вер­ти­каль­но вверх, но на мень­шую вы­со­ту, чем та, с ко­то­рой его от­пу­сти­ли, тре­ния о воз­дух нет. Им­пульс мяча до удара об ас­фальт _________ им­пуль­су мяча после удара. Пол­ная ме­ха­ни­че­ская энер­гия мяча _________, ки­не­ти­че­ская энер­гия мяча до удара о землю ____ после удара о землю.

1.  Равен

2.  Не равен

3.  Со­хра­ня­ет­ся

4.  Не со­хра­ня­ет­ся


Ответ:

5
Тип Д5 1 № 674
i

Пять ме­тал­ли­че­ских брус­ков (А, B, C, D, E) по­ло­жи­ли вплот­ную друг к другу, как по­ка­за­но на ри­сун­ке. Стрел­ки ука­зы­ва­ют на­прав­ле­ние теп­ло­пе­ре­да­чи от брус­ка к брус­ку. Тем­пе­ра­ту­ры брус­ков в дан­ный мо­мент со­став­ля­ют 80 °C, 80 °C, 60 °C, 60 °C, 40 °C. Какие из брус­ков имеют тем­пе­ра­ту­ру 60 °C?


Ответ:

6
Тип Д5 2 № 675
i

Вы­бе­ре­те вер­ные утвер­жде­ния.

Про­цесс, по ко­то­ро­му из­ме­ня­ет­ся со­сто­я­ния газа изо­тер­ми­че­ский, дав­ле­ние этого газа умень­ши­лось в три раза.

1.  Дав­ле­ние газа уве­ли­чит­ся в 3 раза

2.  Дав­ле­ние газа умень­шит­ся в 3 раза

3.  Тем­пе­ра­ту­ра газа уве­ли­чит­ся в 3 раза

4.  Тем­пе­ра­ту­ра газа не из­ме­нит­ся

5.  Объем газа уве­ли­чит­ся в 3 раза

6.  Объем газа умень­шит­ся в 3 раза


Ответ:

7

На ри­сун­ке изоб­ра­же­ны три оди­на­ко­вых элек­тро­мет­ра. Шар элек­тро­мет­ра А не за­ря­жен, шар элек­тро­мет­ра Б за­ря­жен по­ло­жи­тель­но и по­ка­зы­ва­ет заряд 6 ед., шар элек­тро­мет­ра В не за­ря­жен. Ка­ко­вы будут по­ка­за­ния элек­тро­мет­ров А и Б, если их шары со­еди­нить тон­кой мед­ной про­во­ло­кой шаром элек­тро­мет­ра В ?

 

 

По­ка­за­ния элек­тро­мет­ра А По­ка­за­ния элек­тро­мет­ра Б


8
Тип Д9 C9 № 677
i

Чему равно со­про­тив­ле­ние воль­фра­мо­го про­вод­ни­ка с длин­ной 200 м и пло­ща­дью по­пе­реч­но­го се­че­ния 5 мм2? Удель­ное со­про­тив­ле­ние воль­фра­ма равно 0,055 Ом · мм2/м.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

9
Тип Д9 № 678
i

В транс­фор­ма­то­ре, изоб­ражённом на ри­сун­ке, на вход А по­да­ют пе­ре­мен­ное на­пря­же­ние. На об­мот­ках B, C и D воз­ни­ка­ет ЭДС ин­дук­ции. Ко­ли­че­ство вит­ков равно изоб­ражённому на ри­сун­ке. Рас­по­ло­жи­те об­мот­ки B, C и D в по­ряд­ке умень­ше­ния ЭДС ин­дук­ции. За­пи­ши­те в от­ве­те со­от­вет­ству­ю­щую по­сле­до­ва­тель­ность цифр.

 

1)  B

2)  C

3)  D


Ответ:

10
Тип Д6 № 679
i

Вы­бе­ре­те вер­ный ва­ри­ант. Ядро атома хрома \ChemForm_24 в сте­пе­ни левая круг­лая скоб­ка 52 пра­вая круг­лая скоб­ка Cr со­дер­жит:

 

1.  24 ней­тро­на, 28 про­то­нов

2.  52 про­то­нов, 24 ней­тро­нов

3.  24 про­то­нов, 52 ней­тро­нов

4.  28 ней­тро­нов, 24 про­то­на


Ответ:

11
Тип Д10 № 680
i

Дав­ле­ние жид­ко­сти или газа в за­мкну­том объ­е­ме из­ме­ря­ют при по­мо­щи ма­но­мет­ра. По­греш­ность из­ме­ре­ния дав­ле­ния при по­мо­щи дан­но­го ма­но­мет­ра равна его цене де­ле­ния.

За­пи­ши­те в ответ по­ка­за­ния дав­ле­ния в ме­га­пас­ка­лях (МПа, MPA) с учётом по­греш­но­сти из­ме­ре­ний через точку с за­пя­той. На­при­мер, если по­ка­за­ния ма­но­мет­ра (51,0 ± 0,5) МПА, то в от­ве­те сле­ду­ет за­пи­сать «51,0;0,5».


Ответ:

12
Тип Д12 C12 № 681
i

Вам не­об­хо­ди­мо ис­сле­до­вать, как за­ви­сит мощ­ность от на­пря­же­ния. Име­ет­ся сле­ду­ю­щее обо­ру­до­ва­ние:

 

— элек­три­че­ская цепь с ис­точ­ни­ком с по­сто­ян­ным током;

— вольт­метр;

— на­гре­ва­тель с ре­гу­ли­ру­е­мой мощ­но­стью.

 

Опи­ши­те по­ря­док про­ве­де­ния ис­сле­до­ва­ния.

 

В от­ве­те:

1.  За­ри­суй­те или опи­ши­те экс­пе­ри­мен­таль­ную уста­нов­ку.

2.  Опи­ши­те по­ря­док дей­ствий при про­ве­де­нии ис­сле­до­ва­ния.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

13
Тип Д13 № 682
i

Уста­но­ви­те со­от­вет­ствие между при­ме­ра­ми и фи­зи­че­ски­ми яв­ле­ни­я­ми, ко­то­рые эти при-меры ил­лю­стри­ру­ют. Для каж­до­го при­ме­ра про­яв­ле­ния фи­зи­че­ских яв­ле­ний из пер­во­го столб­ца под­бе­ри­те со­от­вет­ству­ю­щее на­зва­ние фи­зи­че­ско­го яв­ле­ния из вто­ро­го столб­ца.

ПРИ­МЕ­РЫ

А)  ма­лень­кие шу­ру­пы при­тя­ги­ва­ют­ся к от­верт­ке

Б)  если в один сок на­лить дру­гой, то они сме­ша­ют­ся

ФИ­ЗИ­ЧЕ­СКИЕ ЯВ­ЛЕ­НИЯ

1)  диф­фу­зия

2)  элек­три­за­ция тел

3)  гра­ви­та­ция тел

4)  маг­нит­ные свой­ства ме­тал­лов

За­пи­ши­те в таб­ли­цу вы­бран­ные цифры под со­от­вет­ству­ю­щи­ми бук­ва­ми.

AБ

Ответ:

14
Тип Д14 C14 № 683
i

Какое фи­зи­че­ское яв­ле­ние обу­слав­ли­ва­ет ра­бо­ту сол­неч­ной ба­та­реи?

 

В про­фес­си­о­наль­ных кру­гах па­не­ли, пре­об­ра­зу­ю­щие сол­неч­ный свет в элек­тро­энер­гию, на­зы­ва­ют фо­то­элек­три­че­ски­ми пре­об­ра­зо­ва­те­ля­ми, ко­то­рые в раз­го­вор­ной речи или при на­пи­са­нии по­нят­ных для ши­ро­ких масс ста­тей при­ня­то на­зы­вать сол­неч­ны­ми ба­та­ре­я­ми. Прин­цип ра­бо­ты этих устройств, пер­вые ра­бо­чие эк­зем­пля­ры ко­то­рых по­яви­лись до­ста­точ­но давно. 25 ап­ре­ля 1954 года, спе­ци­а­ли­сты ком­па­нии Bell Laboratories за­яви­ли о со­зда­нии пер­вых сол­неч­ных ба­та­рей на ос­но­ве крем­ния для по­лу­че­ния элек­три­че­ско­го тока.

Не сек­рет, что p-n пе­ре­ход может пре­об­ра­зо­вы­вать свет в элек­тро­энер­гию. Можно про­ве­сти экс­пе­ри­мент с тран­зи­сто­ром со спи­лен­ной верх­ней крыш­кой, поз­во­ля­ю­щей свету па­дать на p-n пе­ре­ход. Под­клю­чив к нему вольт­метр, можно за­фик­си­ро­вать, как при об­лу­че­нии све­том такой тран­зи­стор вы­де­ля­ет ми­зер­ный элек­три­че­ский ток. А если уве­ли­чить пло­щадь p-n пе­ре­хо­да, что в таком слу­чае про­изой­дет? В ходе на­уч­ных экс­пе­ри­мен­тов про­шлых лет, спе­ци­а­ли­сты из­го­то­ви­ли p-n пе­ре­ход с пла­сти­на­ми боль­шой пло­ща­ди, вы­звав тем самым по­яв­ле­ние на свет фо­то­элек­три­че­ских пре­об­ра­зо­ва­те­лей, на­зы­ва­е­мых сол­неч­ны­ми ба­та­ре­я­ми.

Прин­цип дей­ствия со­вре­мен­ных сол­неч­ных ба­та­рей со­хра­нил­ся, не­смот­ря на мно­го­лет­нюю ис­то­рию их су­ще­ство­ва­ния. Усо­вер­шен­ство­ва­нию под­верг­лась лишь кон­струк­ция и ма­те­ри­а­лы, ис­поль­зу­е­мые в про­из­вод­стве, бла­го­да­ря ко­то­рым про­из­во­ди­те­ли по­сте­пен­но уве­ли­чи­ва­ют такой важ­ный па­ра­метр, как ко­эф­фи­ци­ент фо­то­элек­три­че­ско­го пре­об­ра­зо­ва­ния или КПД устрой­ства. Стоит также ска­зать, что ве­ли­чи­на вы­ход­но­го тока и на­пря­же­ния сол­неч­ной ба­та­реи на­пря­мую за­ви­сит от уров­ня внеш­ней осве­щен­но­сти, ко­то­рый воз­дей­ству­ет на неё.

На кар­тин­ке выше можно ви­деть, что верх­ний слой p-n пе­ре­хо­да, ко­то­рый об­ла­да­ет из­быт­ком элек­тро­нов, со­еди­нен с ме­тал­ли­че­ски­ми пла­сти­на­ми, вы­пол­ня­ю­щи­ми роль по­ло­жи­тель­но­го элек­тро­да, про­пус­ка­ю­щи­ми свет и при­да­ю­щи­ми эле­мен­ту до­пол­ни­тель­ную жест­кость. Ниж­ний слой в кон­струк­ции сол­неч­ной ба­та­реи имеет не­до­ста­ток элек­тро­нов и к нему при­кле­е­на сплош­ная ме­тал­ли­че­ская пла­сти­на, вы­пол­ня­ю­щая функ­цию от­ри­ца­тель­но­го элек­тро­да.

Счи­та­ет­ся, что в иде­а­ле сол­неч­ная ба­та­рея имеет близ­кий к 20 % КПД. Од­на­ко на прак­ти­ке он при­мер­но равен всего 10 %, при том, что для каких сол­неч­ных ба­та­рей боль­ше, для каких то мень­ше. В ос­нов­ном это за­ви­сит от тех­но­ло­гии, по ко­то­рой вы­пол­нен p-n пе­ре­ход. Са­мы­ми хо­до­вы­ми и име­ю­щи­ми наи­боль­ший про­цент КПД про­дол­жа­ют яв­лять­ся сол­неч­ные ба­та­реи, из­го­тов­лен­ные на ос­но­ве мо­но­кри­стал­ла или по­ли­кри­стал­ла крем­ния. При­чем вто­рые из-за от­но­си­тель­ной де­ше­виз­ны ста­но­вят­ся все рас­про­стра­нен­нее. К ка­ко­му типу кон­струк­ции сол­неч­ная ба­та­рея от­но­сит­ся можно опре­де­лить не­во­ору­жен­ным гла­зом. Мо­но­кри­стал­ли­че­ские све­то­пре­об­ра­зо­ва­те­ли имеют ис­клю­чи­тель­но чёрно-серый цвет, а мо­де­ли на ос­но­ве по­ли­кри­стал­ла крем­ния вы­де­ля­ет синяя по­верх­ность. По­ли­кри­стал­ли­че­ские сол­неч­ные ба­та­реи, из­го­тав­ли­ва­е­мые ме­то­дом литья, ока­за­лись более де­ше­вы­ми в про­из­вод­стве. Од­на­ко и у поли- и мо­но­кри­стал­ли­че­ских пла­стин есть один не­до­ста­ток  — кон­струк­ции сол­неч­ных ба­та­рей на их ос­но­ве не об­ла­да­ют гиб­ко­стью, ко­то­рая в не­ко­то­рых слу­ча­ях не по­ме­ша­ет.

Си­ту­а­ция ме­ня­ет­ся с по­яв­ле­ни­ем в 1975 году сол­неч­ной ба­та­реи на ос­но­ве аморф­но­го крем­ния, ак­тив­ный эле­мент ко­то­рых имеет тол­щи­ну от 0,5 до 1 мкм, обес­пе­чи­вая им гиб­кость. Тол­щи­на обыч­ных крем­ни­е­вых эле­мен­тов до­сти­га­ет 300 мкм. Од­на­ко, не­смот­ря на све­то­по­гло­ща­е­мость аморф­но­го крем­ния, ко­то­рая при­мер­но в 20 раз выше, чем у обыч­но­го, эф­фек­тив­ность сол­неч­ных ба­та­рей та­ко­го типа, а имен­но КПД не пре­вы­ша­ет 12 %. Для моно- и по­ли­кри­стал­ли­че­ских ва­ри­ан­тов при всем этом он может до­сти­гать 17 % и 15 % со­от­вет­ствен­но.

Чи­стый крем­ний в про­из­вод­стве пла­стин для сол­неч­ных ба­та­рей прак­ти­че­ски не ис­поль­зу­ет­ся. Чаще всего в ка­че­стве при­ме­сей для из­го­тов­ле­ния пла­сти­ны, вы­ра­ба­ты­ва­ю­щей по­ло­жи­тель­ный заряд, ис­поль­зу­ет­ся бор, а для от­ри­ца­тель­но за­ря­жен­ных пла­стин мы­шьяк. Кроме них при про­из­вод­стве сол­неч­ных ба­та­рей все чаще ис­поль­зу­ют­ся такие ком­по­нен­ты, как ар­се­нид, гал­лий, медь, кад­мий, тел­лу­рид, селен и дру­гие. Бла­го­да­ря ним сол­неч­ные ба­та­реи ста­но­вят­ся менее чув­стви­тель­ны­ми к пе­ре­па­дам окру­жа­ю­щих тем­пе­ра­тур.

В со­вре­мен­ном мире от­дель­но от дру­гих устройств сол­неч­ные ба­та­реи ис­поль­зу­ют­ся все реже, чаще пред­став­ляя собой так на­зы­ва­е­мые си­сте­мы. Учи­ты­вая, что фо­то­элек­три­че­ские эле­мен­ты вы­ра­ба­ты­ва­ют элек­три­че­ский ток толь­ко при пря­мом воз­дей­ствии сол­неч­ных лучей или света, ночью или в пас­мур­ный день они ста­но­вят­ся прак­ти­че­ски бес­по­лез­ны­ми. С си­сте­ма­ми на сол­неч­ных ба­та­ре­ях всё иначе. Они обо­ру­до­ва­ны ак­ку­му­ля­то­ром, спо­соб­ным на­кап­ли­вать элек­три­че­ский ток днем, когда сол­неч­ная ба­та­рея его вы­ра­ба­ты­ва­ет, а ночью, на­коп­лен­ный заряд может от­да­вать по­тре­би­те­лям.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Тип Д15 C15 № 684
i

В про­фес­си­о­наль­ных кру­гах па­не­ли, пре­об­ра­зу­ю­щие сол­неч­ный свет в элек­тро­энер­гию, на­зы­ва­ют фо­то­элек­три­че­ски­ми пре­об­ра­зо­ва­те­ля­ми, ко­то­рые в раз­го­вор­ной речи или при на­пи­са­нии по­нят­ных для ши­ро­ких масс ста­тей при­ня­то на­зы­вать сол­неч­ны­ми ба­та­ре­я­ми. Прин­цип ра­бо­ты этих устройств, пер­вые ра­бо­чие эк­зем­пля­ры ко­то­рых по­яви­лись до­ста­точ­но давно. 25 ап­ре­ля 1954 года, спе­ци­а­ли­сты ком­па­нии Bell Laboratories за­яви­ли о со­зда­нии пер­вых сол­неч­ных ба­та­рей на ос­но­ве крем­ния для по­лу­че­ния элек­три­че­ско­го тока.

Не сек­рет, что p-n пе­ре­ход может пре­об­ра­зо­вы­вать свет в элек­тро­энер­гию. Можно про­ве­сти экс­пе­ри­мент с тран­зи­сто­ром со спи­лен­ной верх­ней крыш­кой, поз­во­ля­ю­щей свету па­дать на p-n пе­ре­ход. Под­клю­чив к нему вольт­метр, можно за­фик­си­ро­вать, как при об­лу­че­нии све­том такой тран­зи­стор вы­де­ля­ет ми­зер­ный элек­три­че­ский ток. А если уве­ли­чить пло­щадь p-n пе­ре­хо­да, что в таком слу­чае про­изой­дет? В ходе на­уч­ных экс­пе­ри­мен­тов про­шлых лет, спе­ци­а­ли­сты из­го­то­ви­ли p-n пе­ре­ход с пла­сти­на­ми боль­шой пло­ща­ди, вы­звав тем самым по­яв­ле­ние на свет фо­то­элек­три­че­ских пре­об­ра­зо­ва­те­лей, на­зы­ва­е­мых сол­неч­ны­ми ба­та­ре­я­ми.

Прин­цип дей­ствия со­вре­мен­ных сол­неч­ных ба­та­рей со­хра­нил­ся, не­смот­ря на мно­го­лет­нюю ис­то­рию их су­ще­ство­ва­ния. Усо­вер­шен­ство­ва­нию под­верг­лась лишь кон­струк­ция и ма­те­ри­а­лы, ис­поль­зу­е­мые в про­из­вод­стве, бла­го­да­ря ко­то­рым про­из­во­ди­те­ли по­сте­пен­но уве­ли­чи­ва­ют такой важ­ный па­ра­метр, как ко­эф­фи­ци­ент фо­то­элек­три­че­ско­го пре­об­ра­зо­ва­ния или КПД устрой­ства. Стоит также ска­зать, что ве­ли­чи­на вы­ход­но­го тока и на­пря­же­ния сол­неч­ной ба­та­реи на­пря­мую за­ви­сит от уров­ня внеш­ней осве­щен­но­сти, ко­то­рый воз­дей­ству­ет на неё.

На кар­тин­ке выше можно ви­деть, что верх­ний слой p-n пе­ре­хо­да, ко­то­рый об­ла­да­ет из­быт­ком элек­тро­нов, со­еди­нен с ме­тал­ли­че­ски­ми пла­сти­на­ми, вы­пол­ня­ю­щи­ми роль по­ло­жи­тель­но­го элек­тро­да, про­пус­ка­ю­щи­ми свет и при­да­ю­щи­ми эле­мен­ту до­пол­ни­тель­ную жест­кость. Ниж­ний слой в кон­струк­ции сол­неч­ной ба­та­реи имеет не­до­ста­ток элек­тро­нов и к нему при­кле­е­на сплош­ная ме­тал­ли­че­ская пла­сти­на, вы­пол­ня­ю­щая функ­цию от­ри­ца­тель­но­го элек­тро­да.

Счи­та­ет­ся, что в иде­а­ле сол­неч­ная ба­та­рея имеет близ­кий к 20 % КПД. Од­на­ко на прак­ти­ке он при­мер­но равен всего 10 %, при том, что для каких сол­неч­ных ба­та­рей боль­ше, для каких то мень­ше. В ос­нов­ном это за­ви­сит от тех­но­ло­гии, по ко­то­рой вы­пол­нен p-n пе­ре­ход. Са­мы­ми хо­до­вы­ми и име­ю­щи­ми наи­боль­ший про­цент КПД про­дол­жа­ют яв­лять­ся сол­неч­ные ба­та­реи, из­го­тов­лен­ные на ос­но­ве мо­но­кри­стал­ла или по­ли­кри­стал­ла крем­ния. При­чем вто­рые из-за от­но­си­тель­ной де­ше­виз­ны ста­но­вят­ся все рас­про­стра­нен­нее. К ка­ко­му типу кон­струк­ции сол­неч­ная ба­та­рея от­но­сит­ся можно опре­де­лить не­во­ору­жен­ным гла­зом. Мо­но­кри­стал­ли­че­ские све­то­пре­об­ра­зо­ва­те­ли имеют ис­клю­чи­тель­но чёрно-серый цвет, а мо­де­ли на ос­но­ве по­ли­кри­стал­ла крем­ния вы­де­ля­ет синяя по­верх­ность. По­ли­кри­стал­ли­че­ские сол­неч­ные ба­та­реи, из­го­тав­ли­ва­е­мые ме­то­дом литья, ока­за­лись более де­ше­вы­ми в про­из­вод­стве. Од­на­ко и у поли- и мо­но­кри­стал­ли­че­ских пла­стин есть один не­до­ста­ток  — кон­струк­ции сол­неч­ных ба­та­рей на их ос­но­ве не об­ла­да­ют гиб­ко­стью, ко­то­рая в не­ко­то­рых слу­ча­ях не по­ме­ша­ет.

Си­ту­а­ция ме­ня­ет­ся с по­яв­ле­ни­ем в 1975 году сол­неч­ной ба­та­реи на ос­но­ве аморф­но­го крем­ния, ак­тив­ный эле­мент ко­то­рых имеет тол­щи­ну от 0,5 до 1 мкм, обес­пе­чи­вая им гиб­кость. Тол­щи­на обыч­ных крем­ни­е­вых эле­мен­тов до­сти­га­ет 300 мкм. Од­на­ко, не­смот­ря на све­то­по­гло­ща­е­мость аморф­но­го крем­ния, ко­то­рая при­мер­но в 20 раз выше, чем у обыч­но­го, эф­фек­тив­ность сол­неч­ных ба­та­рей та­ко­го типа, а имен­но КПД не пре­вы­ша­ет 12 %. Для моно- и по­ли­кри­стал­ли­че­ских ва­ри­ан­тов при всем этом он может до­сти­гать 17 % и 15 % со­от­вет­ствен­но.

Чи­стый крем­ний в про­из­вод­стве пла­стин для сол­неч­ных ба­та­рей прак­ти­че­ски не ис­поль­зу­ет­ся. Чаще всего в ка­че­стве при­ме­сей для из­го­тов­ле­ния пла­сти­ны, вы­ра­ба­ты­ва­ю­щей по­ло­жи­тель­ный заряд, ис­поль­зу­ет­ся бор, а для от­ри­ца­тель­но за­ря­жен­ных пла­стин мы­шьяк. Кроме них при про­из­вод­стве сол­неч­ных ба­та­рей все чаще ис­поль­зу­ют­ся такие ком­по­нен­ты, как ар­се­нид, гал­лий, медь, кад­мий, тел­лу­рид, селен и дру­гие. Бла­го­да­ря ним сол­неч­ные ба­та­реи ста­но­вят­ся менее чув­стви­тель­ны­ми к пе­ре­па­дам окру­жа­ю­щих тем­пе­ра­тур.

В со­вре­мен­ном мире от­дель­но от дру­гих устройств сол­неч­ные ба­та­реи ис­поль­зу­ют­ся все реже, чаще пред­став­ляя собой так на­зы­ва­е­мые си­сте­мы. Учи­ты­вая, что фо­то­элек­три­че­ские эле­мен­ты вы­ра­ба­ты­ва­ют элек­три­че­ский ток толь­ко при пря­мом воз­дей­ствии сол­неч­ных лучей или света, ночью или в пас­мур­ный день они ста­но­вят­ся прак­ти­че­ски бес­по­лез­ны­ми. С си­сте­ма­ми на сол­неч­ных ба­та­ре­ях всё иначе. Они обо­ру­до­ва­ны ак­ку­му­ля­то­ром, спо­соб­ным на­кап­ли­вать элек­три­че­ский ток днем, когда сол­неч­ная ба­та­рея его вы­ра­ба­ты­ва­ет, а ночью, на­коп­лен­ный заряд может от­да­вать по­тре­би­те­лям.

 

Вы­бе­ри­те из пред­ло­жен­но­го пе­реч­ня два вер­ных утвер­жде­ния и за­пи­ши­те но­ме­ра, под ко­то­ры­ми они ука­за­ны.

 

1.  Сол­неч­ные ба­та­реи также на­зы­ва­ют фо­то­элек­три­че­ски­ми пре­об­ра­зо­ва­те­ля­ми.

2.  Ве­ли­чи­на вы­ход­но­го тока и на­пря­же­ния сол­неч­ной ба­та­реи не за­ви­сит от уров­ня внеш­ней осве­щен­но­сти.

3.  Верх­ний слой сол­неч­ной ба­та­реи имеет не­до­ста­ток элек­тро­нов, ниж­ний слой об­ла­да­ет из­быт­ком элек­тро­нов.

4.  Са­мы­ми хо­до­вы­ми и име­ю­щи­ми наи­боль­ший про­цент КПД яв­ля­ют­ся сол­неч­ные ба­та­реи, из­го­тов­лен­ные на ос­но­ве мо­но­кри­стал­ла или по­ли­кри­стал­ла крем­ния.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Тип Д16 C3 № 685
i

По таб­ли­це най­ди­те ве­ще­ство с самым боль­шим кри­ти­че­ским дав­ле­ни­ем.

 

Жид­кое со­сто­я­ние обыч­но счи­та­ют про­ме­жу­точ­ным между твёрдым телом и газом: газ не со­хра­ня­ет ни объём, ни форму, а твёрдое тело со­хра­ня­ет и то, и дру­гое. Форма жид­ких тел может пол­но­стью или от­ча­сти опре­де­лять­ся тем, что их по­верх­ность ведёт себя как упру­гая мем­бра­на. Так, вода может со­би­рать­ся в капли. Но жид­кость спо­соб­на течь даже под своей не­по­движ­ной по­верх­но­стью, и это тоже озна­ча­ет не­со­хра­не­ние формы (внут­рен­них ча­стей жид­ко­го тела). Мо­ле­ку­лы жид­ко­сти не имеют опре­делённого по­ло­же­ния, но в то же время им не­до­ступ­на пол­ная сво­бо­да пе­ре­ме­ще­ний. Между ними су­ще­ству­ет при­тя­же­ние, до­ста­точ­но силь­ное, чтобы удер­жать их на близ­ком рас­сто­я­нии. Ве­ще­ство в жид­ком со­сто­я­нии су­ще­ству­ет в опре­делённом ин­тер­ва­ле тем­пе­ра­тур, ниже ко­то­ро­го пе­ре­хо­дит в твер­дое со­сто­я­ние (про­ис­хо­дит кри­стал­ли­за­ция либо пре­вра­ще­ние в твер­до­тель­ное аморф­ное со­сто­я­ние  — стек­ло), выше  — в га­зо­об­раз­ное (про­ис­хо­дит ис­па­ре­ние). Гра­ни­цы этого ин­тер­ва­ла за­ви­сят от дав­ле­ния. В таб­ли­це при­ве­де­ны тер­мо­ди­на­ми­че­ские по­ка­за­те­ли не­ко­то­рых жид­ко­стей. β - это ко­эф­фи­ци­ент объ­ем­но­го теп­ло­во­го рас­ши­ре­ния.

 

Ве­ще­ствоФор­му­ла\rho, кг/м3t_пл,в сте­пе­ни c ircCt_кин,в сте­пе­ни c ircCt_кр,в сте­пе­ни c ircCP_кр, атмс, Дж/(г ċ К) бета ,10 в сте­пе­ни левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка К в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
Ани­лин\ChemFormC_6H_7N102 (15)−618442652,42,15685
Аце­тон\ChemFormC_3H_6O792−9556,5235472,18143
Бен­зол\ChemFormC_6H_68975,580,1290,550,11,72122
Вода\ChemFormH_2O998,201003742184,1421
Гли­це­рин\ChemFormC_3H_8O_31260202902,4347
Ме­ти­ло­вый спирт\ChemFormCH_4O792,8−93,961,124078,72,39119
Нит­ро­бен­зол\ChemFormC_6H_5O_2N1173,2 (25)5,9210,91,419
Се­ро­угле­род\ChemFormCS_21293−11146,3275771
Спирт эти­ло­вый\ChemFormC_2H_6O789,3−11778,5243,563,12,51108
То­лу­ол\ChemFormC_7H_8867−95,0110,6320,641,61,616 (0)107
Уг­ле­род четырёххло­ри­стый\ChemFormCCl_41595−2376,7283,145122
Ук­сус­ная кис­ло­та\ChemFormC_2H_4O_2104916,7118321,657,2260 (1—8)107
Фенол\ChemFormC_6H_6O107340,1181,741960,5
Хло­ро­форм\ChemFormCHCl_31498,5 (15)−63,56126054,90,96
Эфир эти­ло­вый\ChemFormC_4H_10O714−11634,5193,835,52,34163

 

Твсп – важ­ный по­ка­за­тель по­жар­ной опас­но­сти жид­ко­сти. По ней все жид­ко­сти раз­де­ля­ют­ся на клас­сы:

 

1 класс  — тем­пе­ра­ту­ра вспыш­ки до 28оС в за­кры­том тигле (аце­таль­де­гид, бен­зол, гек­сан, ди­эти­ло­вый эфир, изо­про­пи­ло­вый спирт).

2 класс  — тем­пе­ра­ту­ра вспыш­ки от 29 до 61оС (бу­ти­ло­вый спирт, кумол, сти­рол).

Жид­ко­сти 1 и 2 клас­сов от­но­сят­ся к ЛВЖ (лег­ко­вос­пла­ме­ня­ю­щи­е­ся жид­ко­сти).

3 класс  — тем­пе­ра­ту­ра вспыш­ки от 62 до 120оС (ани­лин, эти­лен­гли­коль).

4 класс  — тем­пе­ра­ту­ра вспыш­ки выше 120оС (гли­це­рин, транс­фор­ма­тор­ное масло).

Жид­ко­сти 3 и 4 клас­сов от­но­сят­ся к ГЖ (го­рю­чая жид­кость).

Тем­пе­ра­ту­ра вос­пла­ме­не­ния  — наи­мень­шая тем­пе­ра­ту­ра ве­ще­ства, при ко­то­рой в усло­ви­ях спе­ци­аль­ных ис­пы­та­ний ве­ще­ство вы­де­ля­ет го­рю­чие пары и газы с такой ско­ро­стью, что после их за­жи­га­ния воз­ни­ка­ет устой­чи­вое пла­мен­ное го­ре­ние.

Пус­ко­вые жид­ко­сти  — это вспо­мо­га­тель­ные сред­ства, поз­во­ля­ю­щие улуч­шить вос­пла­ме­ня­е­мость топ­лив. Не­об­хо­ди­мость в них может воз­ник­нуть в хо­лод­ное время года при не­до­ста­точ­ной ис­па­ря­е­мо­сти бен­зи­на или не­удо­вле­тво­ри­тель­ных теп­ло­фи­зи­че­ских свой­ствах го­рю­чей смеси ди­зель­но­го топ­ли­ва с воз­ду­хом. Пус­ко­вые жид­ко­сти вво­дят­ся в топ­ли­во при по­мо­щи спе­ци­аль­ных устройств. Наи­бо­лее удоб­ны аэро­золь­ные бал­ло­ны, из ко­то­рых смесь рас­пы­ли­ва­ет­ся на воз­душ­ный фильтр. В дви­га­те­лях, ис­поль­зу­ю­щих бен­зин и ди­зель­ное топ­ли­во, прин­цип дей­ствия пус­ко­вых жид­ко­стей раз­ли­чен. Про­бле­ма воз­ни­ка­ю­щая при хо­лод­ном пуске бен­зи­но­во­го дви­га­те­ля, за­клю­ча­ет­ся в не­до­ста­точ­ной ис­па­ря­е­мо­сти бен­зи­на при низ­кой тем­пе­ра­ту­ре, в ре­зуль­та­те чего со­став об­ра­зу­ю­щей­ся го­рю­чей смеси далек от оп­ти­маль­но­го. Из-за этого про­дол­жи­тель­ность пуска воз­рас­та­ет. Это при­во­дит к по­вы­ше­нию пус­ко­вых из­но­сов, росту рас­хо­да топ­ли­ва и уве­ли­че­нию эмис­сии ток­сич­ных про­дук­тов не­пол­но­го сго­ра­ния, ха­рак­тер­ных для пус­ко­во­го пе­ри­о­да. Если кон­цен­тра­ция бен­зи­на в го­рю­чей смеси ниже ниж­не­го кон­цен­тра­ци­он­но­го пре­де­ла вос­пла­ме­не­ния (КПВ), то смесь во­об­ще не вос­пла­ме­нит­ся. По­это­му в ос­но­ву со­ста­вов для пуска хо­лод­ных кар­бю­ра­тор­ных дви­га­те­лей вхо­дят лег­ко­ле­ту­чие жид­ко­сти с ши­ро­ки­ми КПВ.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Тип Д17 № 686
i

Во сколь­ко раз по­ка­за­тель теп­ло­во­го объ­ем­но­го рас­ши­ре­ния аце­то­на боль­ше по­ка­за­те­ля ук­сус­ной кис­ло­ты? Ответ за­пи­ши­те с точ­но­стью до вто­ро­го знака после за­пя­той.

 

Жид­кое со­сто­я­ние обыч­но счи­та­ют про­ме­жу­точ­ным между твёрдым телом и газом: газ не со­хра­ня­ет ни объём, ни форму, а твёрдое тело со­хра­ня­ет и то, и дру­гое. Форма жид­ких тел может пол­но­стью или от­ча­сти опре­де­лять­ся тем, что их по­верх­ность ведёт себя как упру­гая мем­бра­на. Так, вода может со­би­рать­ся в капли. Но жид­кость спо­соб­на течь даже под своей не­по­движ­ной по­верх­но­стью, и это тоже озна­ча­ет не­со­хра­не­ние формы (внут­рен­них ча­стей жид­ко­го тела). Мо­ле­ку­лы жид­ко­сти не имеют опре­делённого по­ло­же­ния, но в то же время им не­до­ступ­на пол­ная сво­бо­да пе­ре­ме­ще­ний. Между ними су­ще­ству­ет при­тя­же­ние, до­ста­точ­но силь­ное, чтобы удер­жать их на близ­ком рас­сто­я­нии. Ве­ще­ство в жид­ком со­сто­я­нии су­ще­ству­ет в опре­делённом ин­тер­ва­ле тем­пе­ра­тур, ниже ко­то­ро­го пе­ре­хо­дит в твер­дое со­сто­я­ние (про­ис­хо­дит кри­стал­ли­за­ция либо пре­вра­ще­ние в твер­до­тель­ное аморф­ное со­сто­я­ние  — стек­ло), выше  — в га­зо­об­раз­ное (про­ис­хо­дит ис­па­ре­ние). Гра­ни­цы этого ин­тер­ва­ла за­ви­сят от дав­ле­ния. В таб­ли­це при­ве­де­ны тер­мо­ди­на­ми­че­ские по­ка­за­те­ли не­ко­то­рых жид­ко­стей; β  — ко­эф­фи­ци­ент объ­ем­но­го теп­ло­во­го рас­ши­ре­ния.

 

Ве­ще­ствоФор­му­ла\rho, кг/м3t_пл,в сте­пе­ни c ircCt_кин,в сте­пе­ни c ircCt_кр,в сте­пе­ни c ircCP_кр, атмс, Дж/(г ċ К) бета ,10 в сте­пе­ни левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка К в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
Ани­лин\ChemFormC_6H_7N102 (15)−618442652,42,15685
Аце­тон\ChemFormC_3H_6O792−9556,5235472,18143
Бен­зол\ChemFormC_6H_68975,580,1290,550,11,72122
Вода\ChemFormH_2O998,201003742184,1421
Гли­це­рин\ChemFormC_3H_8O_31260202902,4347
Ме­ти­ло­вый спирт\ChemFormCH_4O792,8−93,961,124078,72,39119
Нит­ро­бен­зол\ChemFormC_6H_5O_2N1173,2 (25)5,9210,91,419
Се­ро­угле­род\ChemFormCS_21293−11146,3275771
Спирт эти­ло­вый\ChemFormC_2H_6O789,3−11778,5243,563,12,51108
То­лу­ол\ChemFormC_7H_8867−95,0110,6320,641,61,616 (0)107
Уг­ле­род четырёххло­ри­стый\ChemFormCCl_41595−2376,7283,145122
Ук­сус­ная кис­ло­та\ChemFormC_2H_4O_2104916,7118321,657,2260 (1—8)107
Фенол\ChemFormC_6H_6O107340,1181,741960,5
Хло­ро­форм\ChemFormCHCl_31498,5 (15)−63,56126054,90,96
Эфир эти­ло­вый\ChemFormC_4H_10O714−11634,5193,835,52,34163

 

Твсп  — важ­ный по­ка­за­тель по­жар­ной опас­но­сти жид­ко­сти. По ней все жид­ко­сти раз­де­ля­ют­ся на клас­сы:

 

1 класс  — тем­пе­ра­ту­ра вспыш­ки до 28оС в за­кры­том тигле (аце­таль­де­гид, бен­зол, гек­сан, ди­эти­ло­вый эфир, изо­про­пи­ло­вый спирт).

2 класс  — тем­пе­ра­ту­ра вспыш­ки от 29 до 61оС (бу­ти­ло­вый спирт, кумол, сти­рол).

Жид­ко­сти 1 и 2 клас­сов от­но­сят­ся к ЛВЖ (лег­ко­вос­пла­ме­ня­ю­щи­е­ся жид­ко­сти).

3 класс  — тем­пе­ра­ту­ра вспыш­ки от 62 до 120оС (ани­лин, эти­лен­гли­коль).

4 класс  — тем­пе­ра­ту­ра вспыш­ки выше 120оС (гли­це­рин, транс­фор­ма­тор­ное масло).

Жид­ко­сти 3 и 4 клас­сов от­но­сят­ся к ГЖ (го­рю­чая жид­кость).

Тем­пе­ра­ту­ра вос­пла­ме­не­ния  — наи­мень­шая тем­пе­ра­ту­ра ве­ще­ства, при ко­то­рой в усло­ви­ях спе­ци­аль­ных ис­пы­та­ний ве­ще­ство вы­де­ля­ет го­рю­чие пары и газы с такой ско­ро­стью, что после их за­жи­га­ния воз­ни­ка­ет устой­чи­вое пла­мен­ное го­ре­ние.

Пус­ко­вые жид­ко­сти  — это вспо­мо­га­тель­ные сред­ства, поз­во­ля­ю­щие улуч­шить вос­пла­ме­ня­е­мость топ­лив. Не­об­хо­ди­мость в них может воз­ник­нуть в хо­лод­ное время года при не­до­ста­точ­ной ис­па­ря­е­мо­сти бен­зи­на или не­удо­вле­тво­ри­тель­ных теп­ло­фи­зи­че­ских свой­ствах го­рю­чей смеси ди­зель­но­го топ­ли­ва с воз­ду­хом. Пус­ко­вые жид­ко­сти вво­дят­ся в топ­ли­во при по­мо­щи спе­ци­аль­ных устройств. Наи­бо­лее удоб­ны аэро­золь­ные бал­ло­ны, из ко­то­рых смесь рас­пы­ли­ва­ет­ся на воз­душ­ный фильтр. В дви­га­те­лях, ис­поль­зу­ю­щих бен­зин и ди­зель­ное топ­ли­во, прин­цип дей­ствия пус­ко­вых жид­ко­стей раз­ли­чен. Про­бле­ма воз­ни­ка­ю­щая при хо­лод­ном пуске бен­зи­но­во­го дви­га­те­ля, за­клю­ча­ет­ся в не­до­ста­точ­ной ис­па­ря­е­мо­сти бен­зи­на при низ­кой тем­пе­ра­ту­ре, в ре­зуль­та­те чего со­став об­ра­зу­ю­щей­ся го­рю­чей смеси далек от оп­ти­маль­но­го. Из-за этого про­дол­жи­тель­ность пуска воз­рас­та­ет. Это при­во­дит к по­вы­ше­нию пус­ко­вых из­но­сов, росту рас­хо­да топ­ли­ва и уве­ли­че­нию эмис­сии ток­сич­ных про­дук­тов не­пол­но­го сго­ра­ния, ха­рак­тер­ных для пус­ко­во­го пе­ри­о­да. Если кон­цен­тра­ция бен­зи­на в го­рю­чей смеси ниже ниж­не­го кон­цен­тра­ци­он­но­го пре­де­ла вос­пла­ме­не­ния (КПВ), то смесь во­об­ще не вос­пла­ме­нит­ся. По­это­му в ос­но­ву со­ста­вов для пуска хо­лод­ных кар­бю­ра­тор­ных дви­га­те­лей вхо­дят лег­ко­ле­ту­чие жид­ко­сти с ши­ро­ки­ми КПВ.


Ответ:

18
Тип Д18 C9 № 687
i

Можно ли ис­поль­зо­вать эти­ло­вый эфир в ка­че­стве пус­ко­вой жид­ко­сти? Ответ по­яс­ни­те.

 

Жид­кое со­сто­я­ние обыч­но счи­та­ют про­ме­жу­точ­ным между твёрдым телом и газом: газ не со­хра­ня­ет ни объём, ни форму, а твёрдое тело со­хра­ня­ет и то, и дру­гое. Форма жид­ких тел может пол­но­стью или от­ча­сти опре­де­лять­ся тем, что их по­верх­ность ведёт себя как упру­гая мем­бра­на. Так, вода может со­би­рать­ся в капли. Но жид­кость спо­соб­на течь даже под своей не­по­движ­ной по­верх­но­стью, и это тоже озна­ча­ет не­со­хра­не­ние формы (внут­рен­них ча­стей жид­ко­го тела). Мо­ле­ку­лы жид­ко­сти не имеют опре­делённого по­ло­же­ния, но в то же время им не­до­ступ­на пол­ная сво­бо­да пе­ре­ме­ще­ний. Между ними су­ще­ству­ет при­тя­же­ние, до­ста­точ­но силь­ное, чтобы удер­жать их на близ­ком рас­сто­я­нии. Ве­ще­ство в жид­ком со­сто­я­нии су­ще­ству­ет в опре­делённом ин­тер­ва­ле тем­пе­ра­тур, ниже ко­то­ро­го пе­ре­хо­дит в твер­дое со­сто­я­ние (про­ис­хо­дит кри­стал­ли­за­ция либо пре­вра­ще­ние в твер­до­тель­ное аморф­ное со­сто­я­ние  — стек­ло), выше  — в га­зо­об­раз­ное (про­ис­хо­дит ис­па­ре­ние). Гра­ни­цы этого ин­тер­ва­ла за­ви­сят от дав­ле­ния. В таб­ли­це при­ве­де­ны тер­мо­ди­на­ми­че­ские по­ка­за­те­ли не­ко­то­рых жид­ко­стей. β - это ко­эф­фи­ци­ент объ­ем­но­го теп­ло­во­го рас­ши­ре­ния.

 

Ве­ще­ствоФор­му­ла\rho, кг/м3t_пл,в сте­пе­ни c ircCt_кин,в сте­пе­ни c ircCt_кр,в сте­пе­ни c ircCP_кр, атмс, Дж/(г ċ К) бета ,10 в сте­пе­ни левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка К в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
Ани­лин\ChemFormC_6H_7N102 (15)−618442652,42,15685
Аце­тон\ChemFormC_3H_6O792−9556,5235472,18143
Бен­зол\ChemFormC_6H_68975,580,1290,550,11,72122
Вода\ChemFormH_2O998,201003742184,1421
Гли­це­рин\ChemFormC_3H_8O_31260202902,4347
Ме­ти­ло­вый спирт\ChemFormCH_4O792,8−93,961,124078,72,39119
Нит­ро­бен­зол\ChemFormC_6H_5O_2N1173,2 (25)5,9210,91,419
Се­ро­угле­род\ChemFormCS_21293−11146,3275771
Спирт эти­ло­вый\ChemFormC_2H_6O789,3−11778,5243,563,12,51108
То­лу­ол\ChemFormC_7H_8867−95,0110,6320,641,61,616 (0)107
Уг­ле­род четырёххло­ри­стый\ChemFormCCl_41595−2376,7283,145122
Ук­сус­ная кис­ло­та\ChemFormC_2H_4O_2104916,7118321,657,2260 (1—8)107
Фенол\ChemFormC_6H_6O107340,1181,741960,5
Хло­ро­форм\ChemFormCHCl_31498,5 (15)−63,56126054,90,96
Эфир эти­ло­вый\ChemFormC_4H_10O714−11634,5193,835,52,34163

 

Твсп – важ­ный по­ка­за­тель по­жар­ной опас­но­сти жид­ко­сти. По ней все жид­ко­сти раз­де­ля­ют­ся на клас­сы:

 

1 класс  — тем­пе­ра­ту­ра вспыш­ки до 28оС в за­кры­том тигле (аце­таль­де­гид, бен­зол, гек­сан, ди­эти­ло­вый эфир, изо­про­пи­ло­вый спирт).

2 класс  — тем­пе­ра­ту­ра вспыш­ки от 29 до 61оС (бу­ти­ло­вый спирт, кумол, сти­рол).

Жид­ко­сти 1 и 2 клас­сов от­но­сят­ся к ЛВЖ (лег­ко­вос­пла­ме­ня­ю­щи­е­ся жид­ко­сти).

3 класс  — тем­пе­ра­ту­ра вспыш­ки от 62 до 120оС (ани­лин, эти­лен­гли­коль).

4 класс  — тем­пе­ра­ту­ра вспыш­ки выше 120оС (гли­це­рин, транс­фор­ма­тор­ное масло).

Жид­ко­сти 3 и 4 клас­сов от­но­сят­ся к ГЖ (го­рю­чая жид­кость).

Тем­пе­ра­ту­ра вос­пла­ме­не­ния  — наи­мень­шая тем­пе­ра­ту­ра ве­ще­ства, при ко­то­рой в усло­ви­ях спе­ци­аль­ных ис­пы­та­ний ве­ще­ство вы­де­ля­ет го­рю­чие пары и газы с такой ско­ро­стью, что после их за­жи­га­ния воз­ни­ка­ет устой­чи­вое пла­мен­ное го­ре­ние.

Пус­ко­вые жид­ко­сти  — это вспо­мо­га­тель­ные сред­ства, поз­во­ля­ю­щие улуч­шить вос­пла­ме­ня­е­мость топ­лив. Не­об­хо­ди­мость в них может воз­ник­нуть в хо­лод­ное время года при не­до­ста­точ­ной ис­па­ря­е­мо­сти бен­зи­на или не­удо­вле­тво­ри­тель­ных теп­ло­фи­зи­че­ских свой­ствах го­рю­чей смеси ди­зель­но­го топ­ли­ва с воз­ду­хом. Пус­ко­вые жид­ко­сти вво­дят­ся в топ­ли­во при по­мо­щи спе­ци­аль­ных устройств. Наи­бо­лее удоб­ны аэро­золь­ные бал­ло­ны, из ко­то­рых смесь рас­пы­ли­ва­ет­ся на воз­душ­ный фильтр. В дви­га­те­лях, ис­поль­зу­ю­щих бен­зин и ди­зель­ное топ­ли­во, прин­цип дей­ствия пус­ко­вых жид­ко­стей раз­ли­чен. Про­бле­ма воз­ни­ка­ю­щая при хо­лод­ном пуске бен­зи­но­во­го дви­га­те­ля, за­клю­ча­ет­ся в не­до­ста­точ­ной ис­па­ря­е­мо­сти бен­зи­на при низ­кой тем­пе­ра­ту­ре, в ре­зуль­та­те чего со­став об­ра­зу­ю­щей­ся го­рю­чей смеси далек от оп­ти­маль­но­го. Из-за этого про­дол­жи­тель­ность пуска воз­рас­та­ет. Это при­во­дит к по­вы­ше­нию пус­ко­вых из­но­сов, росту рас­хо­да топ­ли­ва и уве­ли­че­нию эмис­сии ток­сич­ных про­дук­тов не­пол­но­го сго­ра­ния, ха­рак­тер­ных для пус­ко­во­го пе­ри­о­да. Если кон­цен­тра­ция бен­зи­на в го­рю­чей смеси ниже ниж­не­го кон­цен­тра­ци­он­но­го пре­де­ла вос­пла­ме­не­ния (КПВ), то смесь во­об­ще не вос­пла­ме­нит­ся. По­это­му в ос­но­ву со­ста­вов для пуска хо­лод­ных кар­бю­ра­тор­ных дви­га­те­лей вхо­дят лег­ко­ле­ту­чие жид­ко­сти с ши­ро­ки­ми КПВ.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.