Задания
Версия для печати и копирования в MS Word
Тип Д14 C14 № 683
i

Какое фи­зи­че­ское яв­ле­ние обу­слав­ли­ва­ет ра­бо­ту сол­неч­ной ба­та­реи?

 

В про­фес­си­о­наль­ных кру­гах па­не­ли, пре­об­ра­зу­ю­щие сол­неч­ный свет в элек­тро­энер­гию, на­зы­ва­ют фо­то­элек­три­че­ски­ми пре­об­ра­зо­ва­те­ля­ми, ко­то­рые в раз­го­вор­ной речи или при на­пи­са­нии по­нят­ных для ши­ро­ких масс ста­тей при­ня­то на­зы­вать сол­неч­ны­ми ба­та­ре­я­ми. Прин­цип ра­бо­ты этих устройств, пер­вые ра­бо­чие эк­зем­пля­ры ко­то­рых по­яви­лись до­ста­точ­но давно. 25 ап­ре­ля 1954 года, спе­ци­а­ли­сты ком­па­нии Bell Laboratories за­яви­ли о со­зда­нии пер­вых сол­неч­ных ба­та­рей на ос­но­ве крем­ния для по­лу­че­ния элек­три­че­ско­го тока.

Не сек­рет, что p-n пе­ре­ход может пре­об­ра­зо­вы­вать свет в элек­тро­энер­гию. Можно про­ве­сти экс­пе­ри­мент с тран­зи­сто­ром со спи­лен­ной верх­ней крыш­кой, поз­во­ля­ю­щей свету па­дать на p-n пе­ре­ход. Под­клю­чив к нему вольт­метр, можно за­фик­си­ро­вать, как при об­лу­че­нии све­том такой тран­зи­стор вы­де­ля­ет ми­зер­ный элек­три­че­ский ток. А если уве­ли­чить пло­щадь p-n пе­ре­хо­да, что в таком слу­чае про­изой­дет? В ходе на­уч­ных экс­пе­ри­мен­тов про­шлых лет, спе­ци­а­ли­сты из­го­то­ви­ли p-n пе­ре­ход с пла­сти­на­ми боль­шой пло­ща­ди, вы­звав тем самым по­яв­ле­ние на свет фо­то­элек­три­че­ских пре­об­ра­зо­ва­те­лей, на­зы­ва­е­мых сол­неч­ны­ми ба­та­ре­я­ми.

Прин­цип дей­ствия со­вре­мен­ных сол­неч­ных ба­та­рей со­хра­нил­ся, не­смот­ря на мно­го­лет­нюю ис­то­рию их су­ще­ство­ва­ния. Усо­вер­шен­ство­ва­нию под­верг­лась лишь кон­струк­ция и ма­те­ри­а­лы, ис­поль­зу­е­мые в про­из­вод­стве, бла­го­да­ря ко­то­рым про­из­во­ди­те­ли по­сте­пен­но уве­ли­чи­ва­ют такой важ­ный па­ра­метр, как ко­эф­фи­ци­ент фо­то­элек­три­че­ско­го пре­об­ра­зо­ва­ния или КПД устрой­ства. Стоит также ска­зать, что ве­ли­чи­на вы­ход­но­го тока и на­пря­же­ния сол­неч­ной ба­та­реи на­пря­мую за­ви­сит от уров­ня внеш­ней осве­щен­но­сти, ко­то­рый воз­дей­ству­ет на неё.

На кар­тин­ке выше можно ви­деть, что верх­ний слой p-n пе­ре­хо­да, ко­то­рый об­ла­да­ет из­быт­ком элек­тро­нов, со­еди­нен с ме­тал­ли­че­ски­ми пла­сти­на­ми, вы­пол­ня­ю­щи­ми роль по­ло­жи­тель­но­го элек­тро­да, про­пус­ка­ю­щи­ми свет и при­да­ю­щи­ми эле­мен­ту до­пол­ни­тель­ную жест­кость. Ниж­ний слой в кон­струк­ции сол­неч­ной ба­та­реи имеет не­до­ста­ток элек­тро­нов и к нему при­кле­е­на сплош­ная ме­тал­ли­че­ская пла­сти­на, вы­пол­ня­ю­щая функ­цию от­ри­ца­тель­но­го элек­тро­да.

Счи­та­ет­ся, что в иде­а­ле сол­неч­ная ба­та­рея имеет близ­кий к 20 % КПД. Од­на­ко на прак­ти­ке он при­мер­но равен всего 10 %, при том, что для каких сол­неч­ных ба­та­рей боль­ше, для каких то мень­ше. В ос­нов­ном это за­ви­сит от тех­но­ло­гии, по ко­то­рой вы­пол­нен p-n пе­ре­ход. Са­мы­ми хо­до­вы­ми и име­ю­щи­ми наи­боль­ший про­цент КПД про­дол­жа­ют яв­лять­ся сол­неч­ные ба­та­реи, из­го­тов­лен­ные на ос­но­ве мо­но­кри­стал­ла или по­ли­кри­стал­ла крем­ния. При­чем вто­рые из-за от­но­си­тель­ной де­ше­виз­ны ста­но­вят­ся все рас­про­стра­нен­нее. К ка­ко­му типу кон­струк­ции сол­неч­ная ба­та­рея от­но­сит­ся можно опре­де­лить не­во­ору­жен­ным гла­зом. Мо­но­кри­стал­ли­че­ские све­то­пре­об­ра­зо­ва­те­ли имеют ис­клю­чи­тель­но чёрно-серый цвет, а мо­де­ли на ос­но­ве по­ли­кри­стал­ла крем­ния вы­де­ля­ет синяя по­верх­ность. По­ли­кри­стал­ли­че­ские сол­неч­ные ба­та­реи, из­го­тав­ли­ва­е­мые ме­то­дом литья, ока­за­лись более де­ше­вы­ми в про­из­вод­стве. Од­на­ко и у поли- и мо­но­кри­стал­ли­че­ских пла­стин есть один не­до­ста­ток  — кон­струк­ции сол­неч­ных ба­та­рей на их ос­но­ве не об­ла­да­ют гиб­ко­стью, ко­то­рая в не­ко­то­рых слу­ча­ях не по­ме­ша­ет.

Си­ту­а­ция ме­ня­ет­ся с по­яв­ле­ни­ем в 1975 году сол­неч­ной ба­та­реи на ос­но­ве аморф­но­го крем­ния, ак­тив­ный эле­мент ко­то­рых имеет тол­щи­ну от 0,5 до 1 мкм, обес­пе­чи­вая им гиб­кость. Тол­щи­на обыч­ных крем­ни­е­вых эле­мен­тов до­сти­га­ет 300 мкм. Од­на­ко, не­смот­ря на све­то­по­гло­ща­е­мость аморф­но­го крем­ния, ко­то­рая при­мер­но в 20 раз выше, чем у обыч­но­го, эф­фек­тив­ность сол­неч­ных ба­та­рей та­ко­го типа, а имен­но КПД не пре­вы­ша­ет 12 %. Для моно- и по­ли­кри­стал­ли­че­ских ва­ри­ан­тов при всем этом он может до­сти­гать 17 % и 15 % со­от­вет­ствен­но.

Чи­стый крем­ний в про­из­вод­стве пла­стин для сол­неч­ных ба­та­рей прак­ти­че­ски не ис­поль­зу­ет­ся. Чаще всего в ка­че­стве при­ме­сей для из­го­тов­ле­ния пла­сти­ны, вы­ра­ба­ты­ва­ю­щей по­ло­жи­тель­ный заряд, ис­поль­зу­ет­ся бор, а для от­ри­ца­тель­но за­ря­жен­ных пла­стин мы­шьяк. Кроме них при про­из­вод­стве сол­неч­ных ба­та­рей все чаще ис­поль­зу­ют­ся такие ком­по­нен­ты, как ар­се­нид, гал­лий, медь, кад­мий, тел­лу­рид, селен и дру­гие. Бла­го­да­ря ним сол­неч­ные ба­та­реи ста­но­вят­ся менее чув­стви­тель­ны­ми к пе­ре­па­дам окру­жа­ю­щих тем­пе­ра­тур.

В со­вре­мен­ном мире от­дель­но от дру­гих устройств сол­неч­ные ба­та­реи ис­поль­зу­ют­ся все реже, чаще пред­став­ляя собой так на­зы­ва­е­мые си­сте­мы. Учи­ты­вая, что фо­то­элек­три­че­ские эле­мен­ты вы­ра­ба­ты­ва­ют элек­три­че­ский ток толь­ко при пря­мом воз­дей­ствии сол­неч­ных лучей или света, ночью или в пас­мур­ный день они ста­но­вят­ся прак­ти­че­ски бес­по­лез­ны­ми. С си­сте­ма­ми на сол­неч­ных ба­та­ре­ях всё иначе. Они обо­ру­до­ва­ны ак­ку­му­ля­то­ром, спо­соб­ным на­кап­ли­вать элек­три­че­ский ток днем, когда сол­неч­ная ба­та­рея его вы­ра­ба­ты­ва­ет, а ночью, на­коп­лен­ный заряд может от­да­вать по­тре­би­те­лям.

Спрятать решение

Ре­ше­ние.

Ответ: пре­об­ра­зо­ва­ние света в элек­тро­энер­гию p-n пе­ре­хо­дом.

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Пред­став­ле­но вер­ное объ­яс­не­ние, не со­дер­жа­щее оши­бок1
Объ­яс­не­ние не пред­став­ле­но.

ИЛИ

В объ­яс­не­нии до­пу­ще­на ошиб­ка

0
Мак­си­маль­ный балл1
Источник: РЕШУ ВПР: Ва­ри­ант для под­го­тов­ки 20
1
Тип Д15 C15 № 684
i

В про­фес­си­о­наль­ных кру­гах па­не­ли, пре­об­ра­зу­ю­щие сол­неч­ный свет в элек­тро­энер­гию, на­зы­ва­ют фо­то­элек­три­че­ски­ми пре­об­ра­зо­ва­те­ля­ми, ко­то­рые в раз­го­вор­ной речи или при на­пи­са­нии по­нят­ных для ши­ро­ких масс ста­тей при­ня­то на­зы­вать сол­неч­ны­ми ба­та­ре­я­ми. Прин­цип ра­бо­ты этих устройств, пер­вые ра­бо­чие эк­зем­пля­ры ко­то­рых по­яви­лись до­ста­точ­но давно. 25 ап­ре­ля 1954 года, спе­ци­а­ли­сты ком­па­нии Bell Laboratories за­яви­ли о со­зда­нии пер­вых сол­неч­ных ба­та­рей на ос­но­ве крем­ния для по­лу­че­ния элек­три­че­ско­го тока.

Не сек­рет, что p-n пе­ре­ход может пре­об­ра­зо­вы­вать свет в элек­тро­энер­гию. Можно про­ве­сти экс­пе­ри­мент с тран­зи­сто­ром со спи­лен­ной верх­ней крыш­кой, поз­во­ля­ю­щей свету па­дать на p-n пе­ре­ход. Под­клю­чив к нему вольт­метр, можно за­фик­си­ро­вать, как при об­лу­че­нии све­том такой тран­зи­стор вы­де­ля­ет ми­зер­ный элек­три­че­ский ток. А если уве­ли­чить пло­щадь p-n пе­ре­хо­да, что в таком слу­чае про­изой­дет? В ходе на­уч­ных экс­пе­ри­мен­тов про­шлых лет, спе­ци­а­ли­сты из­го­то­ви­ли p-n пе­ре­ход с пла­сти­на­ми боль­шой пло­ща­ди, вы­звав тем самым по­яв­ле­ние на свет фо­то­элек­три­че­ских пре­об­ра­зо­ва­те­лей, на­зы­ва­е­мых сол­неч­ны­ми ба­та­ре­я­ми.

Прин­цип дей­ствия со­вре­мен­ных сол­неч­ных ба­та­рей со­хра­нил­ся, не­смот­ря на мно­го­лет­нюю ис­то­рию их су­ще­ство­ва­ния. Усо­вер­шен­ство­ва­нию под­верг­лась лишь кон­струк­ция и ма­те­ри­а­лы, ис­поль­зу­е­мые в про­из­вод­стве, бла­го­да­ря ко­то­рым про­из­во­ди­те­ли по­сте­пен­но уве­ли­чи­ва­ют такой важ­ный па­ра­метр, как ко­эф­фи­ци­ент фо­то­элек­три­че­ско­го пре­об­ра­зо­ва­ния или КПД устрой­ства. Стоит также ска­зать, что ве­ли­чи­на вы­ход­но­го тока и на­пря­же­ния сол­неч­ной ба­та­реи на­пря­мую за­ви­сит от уров­ня внеш­ней осве­щен­но­сти, ко­то­рый воз­дей­ству­ет на неё.

На кар­тин­ке выше можно ви­деть, что верх­ний слой p-n пе­ре­хо­да, ко­то­рый об­ла­да­ет из­быт­ком элек­тро­нов, со­еди­нен с ме­тал­ли­че­ски­ми пла­сти­на­ми, вы­пол­ня­ю­щи­ми роль по­ло­жи­тель­но­го элек­тро­да, про­пус­ка­ю­щи­ми свет и при­да­ю­щи­ми эле­мен­ту до­пол­ни­тель­ную жест­кость. Ниж­ний слой в кон­струк­ции сол­неч­ной ба­та­реи имеет не­до­ста­ток элек­тро­нов и к нему при­кле­е­на сплош­ная ме­тал­ли­че­ская пла­сти­на, вы­пол­ня­ю­щая функ­цию от­ри­ца­тель­но­го элек­тро­да.

Счи­та­ет­ся, что в иде­а­ле сол­неч­ная ба­та­рея имеет близ­кий к 20 % КПД. Од­на­ко на прак­ти­ке он при­мер­но равен всего 10 %, при том, что для каких сол­неч­ных ба­та­рей боль­ше, для каких то мень­ше. В ос­нов­ном это за­ви­сит от тех­но­ло­гии, по ко­то­рой вы­пол­нен p-n пе­ре­ход. Са­мы­ми хо­до­вы­ми и име­ю­щи­ми наи­боль­ший про­цент КПД про­дол­жа­ют яв­лять­ся сол­неч­ные ба­та­реи, из­го­тов­лен­ные на ос­но­ве мо­но­кри­стал­ла или по­ли­кри­стал­ла крем­ния. При­чем вто­рые из-за от­но­си­тель­ной де­ше­виз­ны ста­но­вят­ся все рас­про­стра­нен­нее. К ка­ко­му типу кон­струк­ции сол­неч­ная ба­та­рея от­но­сит­ся можно опре­де­лить не­во­ору­жен­ным гла­зом. Мо­но­кри­стал­ли­че­ские све­то­пре­об­ра­зо­ва­те­ли имеют ис­клю­чи­тель­но чёрно-серый цвет, а мо­де­ли на ос­но­ве по­ли­кри­стал­ла крем­ния вы­де­ля­ет синяя по­верх­ность. По­ли­кри­стал­ли­че­ские сол­неч­ные ба­та­реи, из­го­тав­ли­ва­е­мые ме­то­дом литья, ока­за­лись более де­ше­вы­ми в про­из­вод­стве. Од­на­ко и у поли- и мо­но­кри­стал­ли­че­ских пла­стин есть один не­до­ста­ток  — кон­струк­ции сол­неч­ных ба­та­рей на их ос­но­ве не об­ла­да­ют гиб­ко­стью, ко­то­рая в не­ко­то­рых слу­ча­ях не по­ме­ша­ет.

Си­ту­а­ция ме­ня­ет­ся с по­яв­ле­ни­ем в 1975 году сол­неч­ной ба­та­реи на ос­но­ве аморф­но­го крем­ния, ак­тив­ный эле­мент ко­то­рых имеет тол­щи­ну от 0,5 до 1 мкм, обес­пе­чи­вая им гиб­кость. Тол­щи­на обыч­ных крем­ни­е­вых эле­мен­тов до­сти­га­ет 300 мкм. Од­на­ко, не­смот­ря на све­то­по­гло­ща­е­мость аморф­но­го крем­ния, ко­то­рая при­мер­но в 20 раз выше, чем у обыч­но­го, эф­фек­тив­ность сол­неч­ных ба­та­рей та­ко­го типа, а имен­но КПД не пре­вы­ша­ет 12 %. Для моно- и по­ли­кри­стал­ли­че­ских ва­ри­ан­тов при всем этом он может до­сти­гать 17 % и 15 % со­от­вет­ствен­но.

Чи­стый крем­ний в про­из­вод­стве пла­стин для сол­неч­ных ба­та­рей прак­ти­че­ски не ис­поль­зу­ет­ся. Чаще всего в ка­че­стве при­ме­сей для из­го­тов­ле­ния пла­сти­ны, вы­ра­ба­ты­ва­ю­щей по­ло­жи­тель­ный заряд, ис­поль­зу­ет­ся бор, а для от­ри­ца­тель­но за­ря­жен­ных пла­стин мы­шьяк. Кроме них при про­из­вод­стве сол­неч­ных ба­та­рей все чаще ис­поль­зу­ют­ся такие ком­по­нен­ты, как ар­се­нид, гал­лий, медь, кад­мий, тел­лу­рид, селен и дру­гие. Бла­го­да­ря ним сол­неч­ные ба­та­реи ста­но­вят­ся менее чув­стви­тель­ны­ми к пе­ре­па­дам окру­жа­ю­щих тем­пе­ра­тур.

В со­вре­мен­ном мире от­дель­но от дру­гих устройств сол­неч­ные ба­та­реи ис­поль­зу­ют­ся все реже, чаще пред­став­ляя собой так на­зы­ва­е­мые си­сте­мы. Учи­ты­вая, что фо­то­элек­три­че­ские эле­мен­ты вы­ра­ба­ты­ва­ют элек­три­че­ский ток толь­ко при пря­мом воз­дей­ствии сол­неч­ных лучей или света, ночью или в пас­мур­ный день они ста­но­вят­ся прак­ти­че­ски бес­по­лез­ны­ми. С си­сте­ма­ми на сол­неч­ных ба­та­ре­ях всё иначе. Они обо­ру­до­ва­ны ак­ку­му­ля­то­ром, спо­соб­ным на­кап­ли­вать элек­три­че­ский ток днем, когда сол­неч­ная ба­та­рея его вы­ра­ба­ты­ва­ет, а ночью, на­коп­лен­ный заряд может от­да­вать по­тре­би­те­лям.

 

Вы­бе­ри­те из пред­ло­жен­но­го пе­реч­ня два вер­ных утвер­жде­ния и за­пи­ши­те но­ме­ра, под ко­то­ры­ми они ука­за­ны.

 

1.  Сол­неч­ные ба­та­реи также на­зы­ва­ют фо­то­элек­три­че­ски­ми пре­об­ра­зо­ва­те­ля­ми.

2.  Ве­ли­чи­на вы­ход­но­го тока и на­пря­же­ния сол­неч­ной ба­та­реи не за­ви­сит от уров­ня внеш­ней осве­щен­но­сти.

3.  Верх­ний слой сол­неч­ной ба­та­реи имеет не­до­ста­ток элек­тро­нов, ниж­ний слой об­ла­да­ет из­быт­ком элек­тро­нов.

4.  Са­мы­ми хо­до­вы­ми и име­ю­щи­ми наи­боль­ший про­цент КПД яв­ля­ют­ся сол­неч­ные ба­та­реи, из­го­тов­лен­ные на ос­но­ве мо­но­кри­стал­ла или по­ли­кри­стал­ла крем­ния.