РЕШУ ВПР: Вариант для подготовки 18.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1,4 ± 0,2) Н записывайте следующим образом: 1,40,2.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
Прочитайте перечень понятий, с которыми вы сталкивались в курсе физики:
Спидометр, диффузия, кристаллизация, деформация, штангенциркуль, термометр.
Разделите эти понятия на две группы по выбранному вами признаку. Запишите в таблицу название каждой группы и понятия, входящие в эту группу.
| Название группы понятий | Перечень понятий |
На следующей странице вам будет предложено проверить их самостоятельно.
Автомобиль движется по прямой улице. На графике представлена зависимость его ускорения от времени.
Выберите два утверждения, которые верно описывают движение автомобиля, и запишите номера, под которыми они указаны.
1) Первые 2 с автомобиль движется равноускоренно.
2) В период 2-4 с автомобиль не набирает и не сбрасывает скорость.
3) В период 4-8 с автомобиль движется с постоянной скоростью.
4) За 8 с движения автомобиль ни разу не останавливался.
5) Максимальный модуль ускорения автомобиля за весь период наблюдения равен 2,5 м/с2.
Ответ:
По горке из неподвижного состояния начинает съезжать груз, к которому прикреплена нерастяжимая нить, за которую тянут в направлении подножия горки. Нарисуйте все силы, действующие на груз. Куда направлена суммарная сила, действующая на груз?
На следующей странице вам будет предложено проверить их самостоятельно.
Прочитайте текст и вставьте пропущенные слова:
1) полная механическая
2) кинетическая
3) потенциальная
Слова в ответе могут повторяться.
В поле силы тяжести качаются два одинаковых шара на одинаковой длины упругих нерастяжимых нитях, как показано на рисунке. Всякий раз они испытывают абсолютно упругое соударение друг с другом ровно посередине между точками их подвеса, трения о воздух нет. ____ энергия системы сохраняется, ____ энергия до соударения больше, чем в момент соударения, ____ энергия до соударения меньше, чем в момент соударения,.
Ответ:
Шесть металлических брусков (А, B, C, D, E, F) положили вплотную друг к другу, как показано на рисунке. Стрелки указывают направление теплопередачи от бруска к бруску. Температуры брусков в данный момент составляют 100 °C, 80 °C, 60 °C, 40 °C, 20 °C, 10 °C. Какой из брусков имеет температуру 60 °C?
Ответ:
Выберете верные утверждения.
1. Цикл Карно необратимый цикл.
2. Цикл Карно обратимый цикл.
3. Цикл Карно имеет наибольшее КПД среди всех тепловых машин.
4. Цикл Карно состоит из двух процессов.
5. В процессе Карно термодинамическая система выполняет механическую работу и обменивается теплотой с двумя тепловыми резервуарами, имеющими постоянные, но различающиеся температуры.
6. В процессе Карно термодинамическая система выполняет электрическую работу.
Ответ:
На рисунке изображены три одинаковых электрометра. Шар электрометра А не заряжен, шар электрометра Б не заряжен, а шар электрометра В заряжен отрицательно и показывает заряд 9 ед.. Каковы будут показания электрометров А и Б, если их шары соединить тонкой медной проволокой шаром электрометра В ?
| Показания электрометра А | Показания электрометра Б |
Чему равно сопротивление медного проводника с длинной 800 м и площадью поперечного сечения 6 мм2? Удельное сопротивление меди равно 0,018 Ом · мм2/м.
На следующей странице вам будет предложено проверить их самостоятельно.
В трансформаторе, изображённом на рисунке, на вход А подают переменное напряжение. На обмотках B, C и D возникает ЭДС индукции. Количество витков равно изображённому на рисунке. Расположите обмотки B, C и D в порядке уменьшения ЭДС индукции. Запишите в ответе соответствующую последовательность цифр.
1) B
2) C
3) D
Ответ:
Под действием какой частицы протекает ядерная реакция →
1) Протон
2) Электрон
3) Нейтрон
4) α-частица
Ответ:
Вес тела измеряют при помощи весов. Погрешность измерения веса при помощи данных весов равна их цене деления.
Запишите в ответ показания весов в граммах (г) с учётом погрешности измерений через точку с запятой. Например, если показания весов (510 ± 5) г, то в ответе следует записать «510;5».
Ответ:
Вам необходимо исследовать, как зависит емкость конденсатора от расстояния между обкладками. Имеется следующее оборудование:
— мультиметр;
— набор из четырех конденсаторов с разными расстояниями между обкладками, но с одинаковыми площадями обкладок;
— линейка;
— источник постоянного напряжения.
Опишите порядок проведения исследования.
В ответе:
1. Зарисуйте или опишите экспериментальную установку.
2. Опишите порядок действий при проведении исследования.
На следующей странице вам будет предложено проверить их самостоятельно.
Установите соответствие между примерами и физическими явлениями, которые эти при-меры иллюстрируют. Для каждого примера проявления физических явлений из первого столбца подберите соответствующее название физического явления из второго столбца.
А) через окно из дома можно смотреть на улицу
Б) молния
1) диффузия
2) переход механической энергии в тепловую
3) накопление электрического заряда в атмосфере
4) свет проходит через прозрачные предметы
Запишите в таблицу выбранные цифры под соответствующими буквами.
| A | Б |
Ответ:
Какое физическое явление обуславливает работу конденсаторного микрофона?
Микрофон — электроакустический прибор, преобразующий акустические колебания в электрический сигнал. Принцип работы микрофона заключается в том, что давление звуковых колебаний воздуха, воды или твёрдого вещества действует на тонкую мембрану микрофона. В свою очередь, колебания мембраны возбуждают электрические колебания; в зависимости от типа микрофона для этого используются явление электромагнитной индукции, изменение ёмкости конденсаторов или пьезоэлектрический эффект. Динамический (электродинамический) микрофон — микрофон, сходный по конструкции с динамическим громкоговорителем. Он представляет собой мембрану, соединённую с проводником, который помещен в сильное магнитное поле, создаваемое постоянным магнитом. Колебания давления воздуха (звук) воздействуют на мембрану и приводят в движение проводник. Когда проводник пересекает силовые линии магнитного поля, в нём наводится ЭДС индукции. ЭДС индукции пропорциональна как амплитуде колебаний мембраны, так и частоте колебаний. В отличие от конденсаторных, динамические микрофоны не требуют фантомного питания. Также динамический микрофон делится на два типа по типу проводника: катушечный и ленточный. В электродинамическом микрофоне катушечного типа диафрагма соединена с катушкой, находящейся в кольцевом зазоре магнитной системы. При колебаниях диафрагмы под действием звуковой волны витки катушки пересекают магнитные силовые линии, и в катушке наводится переменная ЭДС. Такой микрофон надёжен в эксплуатации. В электродинамическом микрофоне ленточного типа вместо катушки в магнитном поле располагается гофрированная ленточка из алюминиевой фольги. Такой микрофон применяется главным образом в студиях звукозаписи.
Конденсаторный микрофон — микрофон, действие которого основано на использовании свойств электрического конденсатора (накопления заряда и энергии электрического поля). Используется в основном в студийной звукозаписи. Представляет собой конденсатор, одна из обкладок которого выполнена из эластичного материала (обычно — полимерная плёнка с нанесённой металлизацией). При звуковых колебаниях вибрации эластичной обкладки изменяют ёмкость конденсатора. Если конденсатор заряжен (подключён к источнику постоянного напряжения), то изменение ёмкости конденсатора приводит к изменению запасённого заряда и возникновению токов заряда, которые и являются полезным сигналом, поступающим с микрофона на усилитель. Для работы такого микрофона между обкладками должно быть приложено поляризующее напряжение, 50-60 вольт в более старых микрофонах, а в моделях после 1960—1970-х годов — 48 вольт. Такое напряжение питания считается стандартом, именно с таким фантомным питанием выпускаются предусилители и звуковые карты. Конденсаторный микрофон имеет очень высокое выходное сопротивление. В связи с этим, в непосредственной близости к микрофону (внутри его корпуса) располагают предусилитель с высоким (порядка 1 ГОм) входным сопротивлением, выполненный на электронной лампе или полевом транзисторе, который также обеспечивает балансное подключение микрофона к остальной звукоусиливающей аппаратуре. Как правило, напряжение для поляризации и питания предусилителя подаётся по сигнальным проводам (фантомное питание).
Пьезоэлектрические микрофоны — микрофоны, работающие на пьезоэлектрическом эффекте. При деформации пьезоэлектриков на их поверхности возникают электрические заряды, величина которых пропорциональна деформирующей силе. Пластинки из искусственно выращенных кристаллов служат основным рабочим элементом пьезоэлектрических микрофонов. По характеристикам пьезоэлектрические микрофоны уступают большинству конденсаторных и электродинамических микрофонов, однако в некоторых сферах подобные микрофоны всё же применяются, например в бюджетных или устаревших гитарных звукоснимателях.
На следующей странице вам будет предложено проверить их самостоятельно.
Микрофон — электроакустический прибор, преобразующий акустические колебания в электрический сигнал. Принцип работы микрофона заключается в том, что давление звуковых колебаний воздуха, воды или твёрдого вещества действует на тонкую мембрану микрофона. В свою очередь, колебания мембраны возбуждают электрические колебания; в зависимости от типа микрофона для этого используются явление электромагнитной индукции, изменение ёмкости конденсаторов или пьезоэлектрический эффект. Динамический (электродинамический) микрофон — микрофон, сходный по конструкции с динамическим громкоговорителем. Он представляет собой мембрану, соединённую с проводником, который помещен в сильное магнитное поле, создаваемое постоянным магнитом. Колебания давления воздуха (звук) воздействуют на мембрану и приводят в движение проводник. Когда проводник пересекает силовые линии магнитного поля, в нём наводится ЭДС индукции. ЭДС индукции пропорциональна как амплитуде колебаний мембраны, так и частоте колебаний. В отличие от конденсаторных, динамические микрофоны не требуют фантомного питания. Также динамический микрофон делится на два типа по типу проводника: катушечный и ленточный. В электродинамическом микрофоне катушечного типа диафрагма соединена с катушкой, находящейся в кольцевом зазоре магнитной системы. При колебаниях диафрагмы под действием звуковой волны витки катушки пересекают магнитные силовые линии, и в катушке наводится переменная ЭДС. Такой микрофон надёжен в эксплуатации. В электродинамическом микрофоне ленточного типа вместо катушки в магнитном поле располагается гофрированная ленточка из алюминиевой фольги. Такой микрофон применяется главным образом в студиях звукозаписи.
Конденсаторный микрофон — микрофон, действие которого основано на использовании свойств электрического конденсатора (накопления заряда и энергии электрического поля). Используется в основном в студийной звукозаписи. Представляет собой конденсатор, одна из обкладок которого выполнена из эластичного материала (обычно — полимерная плёнка с нанесённой металлизацией). При звуковых колебаниях вибрации эластичной обкладки изменяют ёмкость конденсатора. Если конденсатор заряжен (подключён к источнику постоянного напряжения), то изменение ёмкости конденсатора приводит к изменению запасённого заряда и возникновению токов заряда, которые и являются полезным сигналом, поступающим с микрофона на усилитель. Для работы такого микрофона между обкладками должно быть приложено поляризующее напряжение, 50-60 вольт в более старых микрофонах, а в моделях после 1960—1970-х годов — 48 вольт. Такое напряжение питания считается стандартом, именно с таким фантомным питанием выпускаются предусилители и звуковые карты. Конденсаторный микрофон имеет очень высокое выходное сопротивление. В связи с этим, в непосредственной близости к микрофону (внутри его корпуса) располагают предусилитель с высоким (порядка 1 ГОм) входным сопротивлением, выполненный на электронной лампе или полевом транзисторе, который также обеспечивает балансное подключение микрофона к остальной звукоусиливающей аппаратуре. Как правило, напряжение для поляризации и питания предусилителя подаётся по сигнальным проводам (фантомное питание).
Пьезоэлектрические микрофоны — микрофоны, работающие на пьезоэлектрическом эффекте. При деформации пьезоэлектриков на их поверхности возникают электрические заряды, величина которых пропорциональна деформирующей силе. Пластинки из искусственно выращенных кристаллов служат основным рабочим элементом пьезоэлектрических микрофонов. По характеристикам пьезоэлектрические микрофоны уступают большинству конденсаторных и электродинамических микрофонов, однако в некоторых сферах подобные микрофоны всё же применяются, например в бюджетных или устаревших гитарных звукоснимателях.
Выберите из предложенного перечня два верных утверждения и запишите номера, под которыми они указаны.
1. По характеристикам пьезоэлектрические микрофоны лучше конденсаторных и электродинамических микрофонов 2. Пластинки из искусственно выращенных кристаллов служат основным рабочим элементом динамических микрофонов.
3. Принцип работы микрофона заключается в том, что давление звуковых колебаний воздуха, воды или твёрдого вещества действует на тонкую мембрану микрофона.
4. в непосредственной близости к конденсаторному микрофону (внутри его корпуса) располагают предусилитель с высоким (порядка 1 ГОм) входным сопротивлением, выполненный на электронной лампе или полевом транзисторе.
На следующей странице вам будет предложено проверить их самостоятельно.
Какой показатель веществ с ковалентной неполярной связью уменьшается при уменьшении температуры кипения?
Ковалентная связь (от лат. co — «совместно» и vales — «имеющий силу») — химическая связь, образованная перекрытием (обобществлением) пары валентных электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой. Термин "ковалентная связь" был впервые введён лауреатом Нобелевской премии Ирвингом Ленгмюром в 1919 году. Этот термин относился к химической связи, обусловленной совместным обладанием электронами, в отличие от металлической связи, в которой электроны были свободными, или от ионной связи, в которой один из атомов отдавал электрон и становился катионом, а другой атом принимал электрон и становился анионом.
Характерные свойства ковалентной связи — направленность, насыщаемость, полярность, поляризуемость — определяют химические и физические свойства соединений.
Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы. Углы между двумя связями называют валентными.
Насыщаемость — способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.
Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные (неполярные — двухатомная молекула состоит из одинаковых атомов (H2, Cl2, N2) и электронные облака каждого атома распределяются симметрично относительно этих атомов; полярные — двухатомная молекула состоит из атомов разных химических элементов, и общее электронное облако смещается в сторону одного из атомов, образуя тем самым асимметрию распределения электрического заряда в молекуле, порождая дипольный момент молекулы).
Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам. Таблица иллюстрирует свойства веществ с ковалентной неполярной связью.
| Вещество | Химическая формула | Относительная молекулярная масса | ||
|---|---|---|---|---|
| Водород (г) | 2 | −253 | −259 | |
| Азот (г) | 28 | −196 | −210 | |
| Кислород (г) | 32 | −183 | −219 | |
| Фтор (г) | 38 | −188 | −220 | |
| Озон (г) | 48 | −112 | −193 | |
| Хлор (г) | 71 | −34 | −101 | |
| Бром (ж) | 160 | +59 | −7 |
На следующей странице вам будет предложено проверить их самостоятельно.
Во сколько раз абсолютное значение температуры плавления брома меньше абсолютного значения температуры плавления водорода?
Ковалентная связь (от лат. co — «совместно» и vales — «имеющий силу») — химическая связь, образованная перекрытием (обобществлением) пары валентных электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой. Термин "ковалентная связь" был впервые введён лауреатом Нобелевской премии Ирвингом Ленгмюром в 1919 году. Этот термин относился к химической связи, обусловленной совместным обладанием электронами, в отличие от металлической связи, в которой электроны были свободными, или от ионной связи, в которой один из атомов отдавал электрон и становился катионом, а другой атом принимал электрон и становился анионом.
Характерные свойства ковалентной связи — направленность, насыщаемость, полярность, поляризуемость — определяют химические и физические свойства соединений.
Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы. Углы между двумя связями называют валентными.
Насыщаемость — способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.
Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные (неполярные — двухатомная молекула состоит из одинаковых атомов (H2, Cl2, N2) и электронные облака каждого атома распределяются симметрично относительно этих атомов; полярные — двухатомная молекула состоит из атомов разных химических элементов, и общее электронное облако смещается в сторону одного из атомов, образуя тем самым асимметрию распределения электрического заряда в молекуле, порождая дипольный момент молекулы).
Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам. Таблица иллюстрирует свойства веществ с ковалентной неполярной связью.
| Вещество | Химическая формула | Относительная молекулярная масса | ||
|---|---|---|---|---|
| Водород (г) | 2 | −253 | −259 | |
| Азот (г) | 28 | −196 | −210 | |
| Кислород (г) | 32 | −183 | −219 | |
| Фтор (г) | 38 | −188 | −220 | |
| Озон (г) | 48 | −112 | −193 | |
| Хлор (г) | 71 | −34 | −101 | |
| Бром (ж) | 160 | +59 | −7 |
Ответ:
Является ли связь в молекуле O3 неполярной? Объясните ответ.
Ковалентная связь (от лат. co — «совместно» и vales — «имеющий силу») — химическая связь, образованная перекрытием (обобществлением) пары валентных электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой. Термин "ковалентная связь" был впервые введён лауреатом Нобелевской премии Ирвингом Ленгмюром в 1919 году. Этот термин относился к химической связи, обусловленной совместным обладанием электронами, в отличие от металлической связи, в которой электроны были свободными, или от ионной связи, в которой один из атомов отдавал электрон и становился катионом, а другой атом принимал электрон и становился анионом.
Характерные свойства ковалентной связи — направленность, насыщаемость, полярность, поляризуемость — определяют химические и физические свойства соединений.
Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы. Углы между двумя связями называют валентными.
Насыщаемость — способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.
Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные (неполярные — двухатомная молекула состоит из одинаковых атомов (H2, Cl2, N2) и электронные облака каждого атома распределяются симметрично относительно этих атомов; полярные — двухатомная молекула состоит из атомов разных химических элементов, и общее электронное облако смещается в сторону одного из атомов, образуя тем самым асимметрию распределения электрического заряда в молекуле, порождая дипольный момент молекулы).
Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам. Таблица иллюстрирует свойства веществ с ковалентной неполярной связью.
| Вещество | Химическая формула | Относительная молекулярная масса | ||
|---|---|---|---|---|
| Водород (г) | 2 | −253 | −259 | |
| Азот (г) | 28 | −196 | −210 | |
| Кислород (г) | 32 | −183 | −219 | |
| Фтор (г) | 38 | −188 | −220 | |
| Озон (г) | 48 | −112 | −193 | |
| Хлор (г) | 71 | −34 | −101 | |
| Бром (ж) | 160 | +59 | −7 |
На следующей странице вам будет предложено проверить их самостоятельно.