Квантовая физика
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
Длина пробега альфа-частицы в воздухе
Альфа-частицы (α-частицы) испускаются веществами в результате радиоактивного распада. Характерные значения скорости α-частиц в этом случае составляют десятки тысяч километров в секунду. Скорость α-частиц уменьшается при прохождении через вещество. Если поместить на пути однородного пучка α-частиц экран из какого-нибудь материала, то скорость α-частиц уменьшится вследствие затрат кинетической энергии на ионизацию атомов и молекул приблизительно одинаково. В воздухе движение α-частиц практически прямолинейно. Расстояние, на котором скорость α-частиц в воздухе падает настолько, что они неспособны ни ионизировать его, ни вызывать сцинтилляцию1, ни засвечивать фотографическую пластинку, называют максимальной длиной пробега α-частиц в воздухе.
Чтобы исследовать постепенное поглощение α-лучей в воздухе, У. Брегг использовал очень тонкий слой радиоактивного вещества — радия, выделяя с помощью диафрагмы тонкий пучок α-частиц, перпендикулярный излучающей поверхности. Бреггом была впервые получена кривая ионизации. Для радиоактивного висмута она резко обрывалась на расстоянии около 7 см от источника (см. рис. 1).
В опытах было установлено, что длина пробега (Rпроб) обратно пропорциональна плотности воздуха (ρ), при этом плотность воздуха, как известно, зависит от его давления и температуры В таблицах приводят значения, соответствующие давлению 760 мм рт. ст. и температуре 15 ºС. Так, α-частицы, испущенные
обладают длиной пробега в воздухе 7 см. Если на пути таких частиц поставить преграду, например алюминиевую фольгу, то длина пробега в воздухе уменьшится с 7 до 5 см. В этом случае говорят, что тормозящая способность этого листка алюминия эквивалентна 2 см воздуха. Разные радиоактивные материалы испускают α-частицы с разной скоростью, но все частицы, испущенные одним и тем же веществом, имеют примерно одинаковую скорость.
Установлено, что при прочих равных условиях Экспериментальное измерение максимального пробега α-частиц в воздухе — один из методов определения скорости этих частиц, а значит, и их кинетической энергии.
1Сцинтилляция — кратковременная вспышка света, возникающая при попадании α-частицы на экран, покрытый сульфидом цинка ZnS.
Вставьте в предложение пропущенные слова (сочетания слов), используя информацию из текста.
Количество ежесекундных сцинтилляций, вызываемых ___________________, испускаемыми ядрами висмута, при удалении от источника, расположенного в воздухе, ___________________ вплоть до расстояний в 5,75 см от источника излучений.
В ответ запишите слова (сочетания слов) по порядку, без дополнительных символов.
Длина пробега альфа-частицы в воздухе
Альфа-частицы (α-частицы) испускаются веществами в результате радиоактивного распада. Характерные значения скорости α-частиц в этом случае составляют десятки тысяч километров в секунду. Скорость α-частиц уменьшается при прохождении через вещество. Если поместить на пути однородного пучка α-частиц экран из какого-нибудь материала, то скорость α-частиц уменьшится вследствие затрат кинетической энергии на ионизацию атомов и молекул приблизительно одинаково. В воздухе движение α-частиц практически прямолинейно. Расстояние, на котором скорость α-частиц в воздухе падает настолько, что они неспособны ни ионизировать его, ни вызывать сцинтилляцию1, ни засвечивать фотографическую пластинку, называют максимальной длиной пробега α-частиц в воздухе.
Чтобы исследовать постепенное поглощение α-лучей в воздухе, У. Брегг использовал очень тонкий слой радиоактивного вещества — радия, выделяя с помощью диафрагмы тонкий пучок α-частиц, перпендикулярный излучающей поверхности. Бреггом была впервые получена кривая ионизации. Для радиоактивного висмута она резко обрывалась на расстоянии около 7 см от источника (см. рис. 1).
В опытах было установлено, что длина пробега (Rпроб) обратно пропорциональна плотности воздуха (ρ), при этом плотность воздуха, как известно, зависит от его давления и температуры В таблицах приводят значения, соответствующие давлению 760 мм рт. ст. и температуре 15 ºС. Так, α-частицы, испущенные
обладают длиной пробега в воздухе 7 см. Если на пути таких частиц поставить преграду, например алюминиевую фольгу, то длина пробега в воздухе уменьшится с 7 до 5 см. В этом случае говорят, что тормозящая способность этого листка алюминия эквивалентна 2 см воздуха. Разные радиоактивные материалы испускают α-частицы с разной скоростью, но все частицы, испущенные одним и тем же веществом, имеют примерно одинаковую скорость.
Установлено, что при прочих равных условиях Экспериментальное измерение максимального пробега α-частиц в воздухе — один из методов определения скорости этих частиц, а значит, и их кинетической энергии.
1Сцинтилляция — кратковременная вспышка света, возникающая при попадании α-частицы на экран, покрытый сульфидом цинка ZnS.
Вставьте в предложение пропущенные слова (сочетания слов), используя информацию из текста.
Все α-частицы, испускаемые одни и тем же веществом, имеют __________________ скорость. Длина их пробега в воздухе зависит от ________________ воздуха.
В ответ запишите слова (сочетания слов) по порядку, без дополнительных символов.
Фотолюминесценция
Световая волна, падающая на тело, частично отражается от него, частично проходит насквозь, частично поглощается. Часто энергия поглощённой световой волны целиком переходит во внутреннюю энергию вещества, что проявляется в нагревании тела. Однако известная часть этой поглощённой энергии может вызвать и другие явления: фотоэлектрический эффект, фотохимические превращения, фотолюминесценцию.
Так, некоторые тела при освещении не только отражают часть падающего на них света, но и сами начинают светиться. Такое свечение, или фотолюминесценция, отличается важной особенностью: свет люминесценции имеет иной спектральный состав, чем свет, вызвавший свечение (см. рис.). Наблюдения показывают, что свет люминесценции характеризуется бо́льшей длиной волны, чем возбуждающий свет. Это правило носит название правила Стокса в честь английского физика Георга Стокса (1819—1903). Вещества, обладающие ярко выраженной способностью люминесцировать, называются люминофоры.
Свечение вещества (люминесценция) связано с переходами атомов и молекул с высших энергетических уровней на низшие уровни. Люминесценции должно предшествовать возбуждение атомов и молекул вещества. При фотолюминесценции возбуждение происходит под действием видимого или ультрафиолетового излучения.
Некоторые тела сохраняют способность светиться некоторое время после того, как освещение их прекратилось. Такое послесвечение может иметь различную длительность. В некоторых объектах оно продолжается очень малое время (десятитысячные доли секунды и меньше), и для его наблюдения требуются особые приспособления. В других оно тянется много секунд и даже минут (часов), так что его наблюдение не представляет никаких трудностей. Принято называть свечение, прекращающееся вместе с освещением, флюоресценцией, а свечение, имеющее заметную длительность, — фосфоресценцией.
Люминесценция нашла применение при изготовлении ламп дневного света. Возникающий в лампе, заполненной парами ртути, газовый разряд вызывает электролюминесценцию паров ртути. В спектре излучения ртути имеется ультрафиолетовое излучение с длиной волны 0,257 мкм, которое, в свою очередь, возбуждает фотолюминесценцию люминофора, нанесённого на внутреннюю сторону стенок лампы и дающего видимый свет. Изменяя состав люминофора, можно изготавливать лампы с требуемым спектром фотолюминесценции. При смещении максимума излучения в длинноволновую область видимого спектра получают тёпло-белый (желтоватый) свет, в коротковолновую — холодно-белый (голубоватый) свет.
Вставьте в предложение пропущенные слова (сочетания слов), используя информацию из текста.
Фиолетовое стекло пропускает лучи только _____________________ цвета. Если пучок такого света направить на раствор флюоресцеина, то освещённая жидкость начинает светиться _____________________ светом.
В ответ запишите слова (сочетания слов) по порядку, без дополнительных символов.
Гамма-излучение было открыто в начале XX в. при изучении радиоактивного излучения радия. Гамма-излучение – широкий диапазон электромагнитного спектра, поскольку он не ограничен со стороны высоких энергий. Мягкое гамма-излучение с энергией от 100 кэВ образуется при энергетических переходах внутри атомных ядер. Более жёсткое, с энергией от 10 МэВ, — при ядерных реакциях. Существуют космические гамма-лучи, которые почти полностью задерживаются атмосферой Земли, поэтому наблюдать их можно только из космоса.
На рисунке — фотография неба в гамма-лучах с энергией 100 МэВ. Обзор в диапазоне жёсткого гамма-излучения выполнен космической гамма-обсерваторией «Комптон», которая была запущена по программе NASA «Великие обсерватории» и с 1991 по 2000 г. вела наблюдения в диапазоне от жёсткого рентгена до жёсткого гамма-излучения. На фотографии отчётливо видна плоскость Галактики, где излучение формируется в основном остатками сверхновых. Яркие источники вдали от плоскости Галактики имеют в основном внегалактическое происхождение.
Гамма-кванты сверхвысоких энергий (от 100 ГэВ) рождаются при столкновении заряженных частиц, разогнанных мощными электромагнитными полями космических объектов или земных ускорителей элементарных частиц. В атмосфере они разрушают ядра атомов, порождая каскады частиц, летящих с околосветовой скоростью. При торможении эти частицы испускают свет, который наблюдают с помощью специальных телескопов на Земле.
Где и как образуются гамма-лучи ультравысоких энергий (от 100 ТэВ1), пока не вполне ясно. Земным технологиям такие энергии недоступны. Самые энергичные наблюдаемые кванты (1020–1021 эВ), приходят из космоса крайне редко — примерно один квант в 100 лет на квадратный километр.
Гамма-кванты негативно воздействуют на организм человека и являются мутагенным фактором. Обладая высокой проникающей способностью, они ионизуют и разрушают молекулы, которые, в свою очередь, начинают ионизировать следующую порцию молекул. Происходит трансформация клеток и появление мутированных клеток, которые не способны исполнять возложенные на них функции.
Несмотря на опасность таких лучей, их используют в различных областях, соблюдая необходимые меры защиты, например для стерилизации продуктов, обработки медицинского инструментария и техники, контроля над внутренним состоянием ряда изделий, а также для культивирования растений. В последнем случае мутации сельскохозяйственных культур позволяют использовать их для выращивания на территории стран, изначально к этому не приспособленных. Применяются гамма-лучи и при лечении различных онкологических заболеваний. Метод получил название лучевой терапии.
----------------------
1 1 ТэВ = 1012 эВ; 1 эВ = 1,6·10−19 Дж
Вставьте в предложение пропущенные слова (сочетания слов), используя информацию из текста.
Земные организмы защищены от воздействия космических гамма-квантов, так как они задерживаются _________________. Для наблюдения этого гамма-излучения используют гамма-телескопы, расположенные _______________________.
В ответ запишите слова (сочетания слов) по порядку, без дополнительных символов.
Гамма-излучение было открыто в начале XX в. при изучении радиоактивного излучения радия. Гамма-излучение – широкий диапазон электромагнитного спектра, поскольку он не ограничен со стороны высоких энергий. Мягкое гамма-излучение с энергией от 100 кэВ образуется при энергетических переходах внутри атомных ядер. Более жёсткое, с энергией от 10 МэВ, — при ядерных реакциях. Существуют космические гамма-лучи, которые почти полностью задерживаются атмосферой Земли, поэтому наблюдать их можно только из космоса.
Гамма-кванты сверхвысоких энергий (от 100 ГэВ) рождаются при столкновении заряженных частиц, разогнанных мощными электромагнитными полями космических объектов или земных ускорителей элементарных частиц. В атмосфере они разрушают ядра атомов, порождая каскады частиц, летящих с околосветовой скоростью. При торможении эти частицы испускают свет, который наблюдают с помощью специальных телескопов на Земле.
Где и как образуются гамма-лучи ультравысоких энергий (от 100 ТэВ1), пока не вполне ясно. Земным технологиям такие энергии недоступны. Самые энергичные наблюдаемые кванты (1020–1021 эВ), приходят из космоса крайне редко — примерно один квант в 100 лет на квадратный километр.
Гамма-кванты негативно воздействуют на организм человека и являются мутагенным фактором. Обладая высокой проникающей способностью, они ионизуют и разрушают молекулы, которые, в свою очередь, начинают ионизировать следующую порцию молекул. Происходит трансформация клеток и появление мутированных клеток, которые не способны исполнять возложенные на них функции.
Несмотря на опасность таких лучей, их используют в различных областях, соблюдая необходимые меры защиты, например для стерилизации продуктов, обработки медицинского инструментария и техники, контроля над внутренним состоянием ряда изделий, а также для культивирования растений. В последнем случае мутации сельскохозяйственных культур позволяют использовать их для выращивания на территории стран, изначально к этому не приспособленных. Применяются гамма-лучи и при лечении различных онкологических заболеваний. Метод получил название лучевой терапии.
----------------------
1 1 ТэВ = 1012 эВ; 1 эВ = 1,6·10−19 Дж
Вставьте в предложение пропущенные слова (сочетания слов), используя информацию из текста.
Мягкое гамма-излучение образуется в процессе энергетических переходов ________________, а гамма-кванты с энергией более 100 гигаэлектронвольт возникают при взаимодействии ________________________ в ускорителях элементарных частиц.
В ответ запишите слова (сочетания слов) по порядку, без дополнительных символов.
Пройти тестирование по этим заданиям

