Каталог заданий.
Квантовая физика

Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Тип 16 № 1702
i

Длина про­бе­га альфа-ча­сти­цы в воз­ду­хе

Альфа-ча­сти­цы (α-ча­сти­цы) ис­пус­ка­ют­ся ве­ще­ства­ми в ре­зуль­та­те ра­дио­ак­тив­но­го рас­па­да. Ха­рак­тер­ные зна­че­ния ско­ро­сти α-ча­стиц в этом слу­чае со­став­ля­ют де­сят­ки тысяч ки­ло­мет­ров в се­кун­ду. Ско­рость α-ча­стиц умень­ша­ет­ся при про­хож­де­нии через ве­ще­ство. Если по­ме­стить на пути од­но­род­но­го пучка α-ча­стиц экран из ка­ко­го-ни­будь ма­те­ри­а­ла, то ско­рость α-ча­стиц умень­шит­ся вслед­ствие за­трат ки­не­ти­че­ской энер­гии на иони­за­цию ато­мов и мо­ле­кул при­бли­зи­тель­но оди­на­ко­во. В воз­ду­хе дви­же­ние α-ча­стиц прак­ти­че­ски пря­мо­ли­ней­но. Рас­сто­я­ние, на ко­то­ром ско­рость α-ча­стиц в воз­ду­хе па­да­ет на­столь­ко, что они не­спо­соб­ны ни иони­зи­ро­вать его, ни вы­зы­вать сцин­тил­ля­цию1, ни за­све­чи­вать фо­то­гра­фи­че­скую пла­стин­ку, на­зы­ва­ют мак­си­маль­ной дли­ной про­бе­га α-ча­стиц в воз­ду­хе.

Чтобы ис­сле­до­вать по­сте­пен­ное по­гло­ще­ние α-лучей в воз­ду­хе, У. Брегг ис­поль­зо­вал очень тон­кий слой ра­дио­ак­тив­но­го ве­ще­ства  — радия, вы­де­ляя с по­мо­щью диа­фраг­мы тон­кий пучок α-ча­стиц, пер­пен­ди­ку­ляр­ный из­лу­ча­ю­щей по­верх­но­сти. Брег­гом была впер­вые по­лу­че­на кри­вая иони­за­ции. Для ра­дио­ак­тив­но­го вис­му­та \ChemForm левая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 214 пра­вая круг­лая скоб­ка Bi пра­вая круг­лая скоб­ка она резко об­ры­ва­лась на рас­сто­я­нии около 7 см от ис­точ­ни­ка (см. рис. 1).

Ри­су­нок 1. Опре­де­ле­ние длины про­бе­га α-ча­сти­цы, ис­пу­щен­ных 214Bi

В опы­тах было уста­нов­ле­но, что длина про­бе­га (Rпроб) об­рат­но про­пор­ци­о­наль­на плот­но­сти воз­ду­ха (ρ), при этом плот­ность воз­ду­ха, как из­вест­но, за­ви­сит от его дав­ле­ния и тем­пе­ра­ту­ры  левая круг­лая скоб­ка p \sim дробь: чис­ли­тель: p, зна­ме­на­тель: T конец дроби пра­вая круг­лая скоб­ка . В таб­ли­цах при­во­дят зна­че­ния, со­от­вет­ству­ю­щие дав­ле­нию 760 мм рт. ст. и тем­пе­ра­ту­ре 15 ºС. Так, α-ча­сти­цы, ис­пу­щен­ные \ChemForm левая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 214 пра­вая круг­лая скоб­ка Bi пра­вая круг­лая скоб­ка , об­ла­да­ют дли­ной про­бе­га в воз­ду­хе 7 см. Если на пути таких ча­стиц по­ста­вить пре­гра­ду, на­при­мер алю­ми­ни­е­вую фоль­гу, то длина про­бе­га в воз­ду­хе умень­шит­ся с 7 до 5 см. В этом слу­чае го­во­рят, что тор­мо­зя­щая спо­соб­ность этого лист­ка алю­ми­ния эк­ви­ва­лент­на 2 см воз­ду­ха. Раз­ные ра­дио­ак­тив­ные ма­те­ри­а­лы ис­пус­ка­ют α-ча­сти­цы с раз­ной ско­ро­стью, но все ча­сти­цы, ис­пу­щен­ные одним и тем же ве­ще­ством, имеют при­мер­но оди­на­ко­вую ско­рость.

Уста­нов­ле­но, что при про­чих рав­ных усло­ви­ях R_проб \sim v в кубе . Экс­пе­ри­мен­таль­ное из­ме­ре­ние мак­си­маль­но­го про­бе­га α-ча­стиц в воз­ду­хе  — один из ме­то­дов опре­де­ле­ния ско­ро­сти этих ча­стиц, а зна­чит, и их ки­не­ти­че­ской энер­гии.

 

1Сцин­тил­ля­ция  — крат­ко­вре­мен­ная вспыш­ка света, воз­ни­ка­ю­щая при по­па­да­нии α-ча­сти­цы на экран, по­кры­тый суль­фи­дом цинка ZnS.

Вставь­те в пред­ло­же­ние про­пу­щен­ные слова (со­че­та­ния слов), ис­поль­зуя ин­фор­ма­цию из тек­ста.

 

Ко­ли­че­ство еже­се­кунд­ных сцин­тил­ля­ций, вы­зы­ва­е­мых ___________________, ис­пус­ка­е­мы­ми яд­ра­ми вис­му­та, при уда­ле­нии от ис­точ­ни­ка, рас­по­ло­жен­но­го в воз­ду­хе, ___________________ вплоть до рас­сто­я­ний в 5,75 см от ис­точ­ни­ка из­лу­че­ний.

 

В ответ за­пи­ши­те слова (со­че­та­ния слов) по по­ряд­ку, без до­пол­ни­тель­ных сим­во­лов.

1
Тип 16 № 2024
i

Вставь­те в пред­ло­же­ние про­пу­щен­ные слова (со­че­та­ния слов), ис­поль­зуя ин­фор­ма­цию из тек­ста.

 

Все α-ча­сти­цы, ис­пус­ка­е­мые одни и тем же ве­ще­ством, имеют __________________ ско­рость. Длина их про­бе­га в воз­ду­хе за­ви­сит от ________________ воз­ду­ха.

 

В ответ за­пи­ши­те слова (со­че­та­ния слов) по по­ряд­ку, без до­пол­ни­тель­ных сим­во­лов.


2

На ри­сун­ке при­ве­де­ны кри­вые иони­за­ции α-ча­стиц, ис­пу­щен­ных 210Po, в воз­ду­хе. В опыте М. Кюри кри­вые I и II были по­лу­че­ны для про­бе­га α-ча­стиц при двух раз­ных плот­но­стях воз­ду­ха. Ка­ко­во было со­от­но­ше­ние плот­но­стей воз­ду­ха  дробь: чис­ли­тель: \rho_I, зна­ме­на­тель: \rho_II конец дроби ?


3
Тип 18 № 1704
i

М. Кюри опи­сы­ва­ла сле­ду­ю­щий опыт: если в тем­но­те пла­стин­ку, по­кры­тую сер­ни­стым цин­ком, при­бли­жать к ра­дио­ак­тив­но­му изо­то­пу по­ло­ния (210Po), пре­тер­пе­ва­ю­ще­му α-рас­пад, то она на­чи­на­ет све­тить­ся, когда рас­сто­я­ние между ней и ис­точ­ни­ком со­став­ля­ет 3,9 см. Ка­ко­ва мак­си­маль­ная длина про­бе­га α-ча­стиц, ис­пу­щен­ных этим изо­то­пом по­ло­ния? Ответ по­яс­ни­те.


2
Тип 16 № 2024
i

Длина про­бе­га альфа-ча­сти­цы в воз­ду­хе

Альфа-ча­сти­цы (α-ча­сти­цы) ис­пус­ка­ют­ся ве­ще­ства­ми в ре­зуль­та­те ра­дио­ак­тив­но­го рас­па­да. Ха­рак­тер­ные зна­че­ния ско­ро­сти α-ча­стиц в этом слу­чае со­став­ля­ют де­сят­ки тысяч ки­ло­мет­ров в се­кун­ду. Ско­рость α-ча­стиц умень­ша­ет­ся при про­хож­де­нии через ве­ще­ство. Если по­ме­стить на пути од­но­род­но­го пучка α-ча­стиц экран из ка­ко­го-ни­будь ма­те­ри­а­ла, то ско­рость α-ча­стиц умень­шит­ся вслед­ствие за­трат ки­не­ти­че­ской энер­гии на иони­за­цию ато­мов и мо­ле­кул при­бли­зи­тель­но оди­на­ко­во. В воз­ду­хе дви­же­ние α-ча­стиц прак­ти­че­ски пря­мо­ли­ней­но. Рас­сто­я­ние, на ко­то­ром ско­рость α-ча­стиц в воз­ду­хе па­да­ет на­столь­ко, что они не­спо­соб­ны ни иони­зи­ро­вать его, ни вы­зы­вать сцин­тил­ля­цию1, ни за­све­чи­вать фо­то­гра­фи­че­скую пла­стин­ку, на­зы­ва­ют мак­си­маль­ной дли­ной про­бе­га α-ча­стиц в воз­ду­хе.

Чтобы ис­сле­до­вать по­сте­пен­ное по­гло­ще­ние α-лучей в воз­ду­хе, У. Брегг ис­поль­зо­вал очень тон­кий слой ра­дио­ак­тив­но­го ве­ще­ства  — радия, вы­де­ляя с по­мо­щью диа­фраг­мы тон­кий пучок α-ча­стиц, пер­пен­ди­ку­ляр­ный из­лу­ча­ю­щей по­верх­но­сти. Брег­гом была впер­вые по­лу­че­на кри­вая иони­за­ции. Для ра­дио­ак­тив­но­го вис­му­та \ChemForm левая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 214 пра­вая круг­лая скоб­ка Bi пра­вая круг­лая скоб­ка она резко об­ры­ва­лась на рас­сто­я­нии около 7 см от ис­точ­ни­ка (см. рис. 1).

Ри­су­нок 1. Опре­де­ле­ние длины про­бе­га α-ча­сти­цы, ис­пу­щен­ных 214Bi

В опы­тах было уста­нов­ле­но, что длина про­бе­га (Rпроб) об­рат­но про­пор­ци­о­наль­на плот­но­сти воз­ду­ха (ρ), при этом плот­ность воз­ду­ха, как из­вест­но, за­ви­сит от его дав­ле­ния и тем­пе­ра­ту­ры  левая круг­лая скоб­ка p \sim дробь: чис­ли­тель: p, зна­ме­на­тель: T конец дроби пра­вая круг­лая скоб­ка . В таб­ли­цах при­во­дят зна­че­ния, со­от­вет­ству­ю­щие дав­ле­нию 760 мм рт. ст. и тем­пе­ра­ту­ре 15 ºС. Так, α-ча­сти­цы, ис­пу­щен­ные \ChemForm левая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 214 пра­вая круг­лая скоб­ка Bi пра­вая круг­лая скоб­ка , об­ла­да­ют дли­ной про­бе­га в воз­ду­хе 7 см. Если на пути таких ча­стиц по­ста­вить пре­гра­ду, на­при­мер алю­ми­ни­е­вую фоль­гу, то длина про­бе­га в воз­ду­хе умень­шит­ся с 7 до 5 см. В этом слу­чае го­во­рят, что тор­мо­зя­щая спо­соб­ность этого лист­ка алю­ми­ния эк­ви­ва­лент­на 2 см воз­ду­ха. Раз­ные ра­дио­ак­тив­ные ма­те­ри­а­лы ис­пус­ка­ют α-ча­сти­цы с раз­ной ско­ро­стью, но все ча­сти­цы, ис­пу­щен­ные одним и тем же ве­ще­ством, имеют при­мер­но оди­на­ко­вую ско­рость.

Уста­нов­ле­но, что при про­чих рав­ных усло­ви­ях R_проб \sim v в кубе . Экс­пе­ри­мен­таль­ное из­ме­ре­ние мак­си­маль­но­го про­бе­га α-ча­стиц в воз­ду­хе  — один из ме­то­дов опре­де­ле­ния ско­ро­сти этих ча­стиц, а зна­чит, и их ки­не­ти­че­ской энер­гии.

 

1Сцин­тил­ля­ция  — крат­ко­вре­мен­ная вспыш­ка света, воз­ни­ка­ю­щая при по­па­да­нии α-ча­сти­цы на экран, по­кры­тый суль­фи­дом цинка ZnS.

Вставь­те в пред­ло­же­ние про­пу­щен­ные слова (со­че­та­ния слов), ис­поль­зуя ин­фор­ма­цию из тек­ста.

 

Все α-ча­сти­цы, ис­пус­ка­е­мые одни и тем же ве­ще­ством, имеют __________________ ско­рость. Длина их про­бе­га в воз­ду­хе за­ви­сит от ________________ воз­ду­ха.

 

В ответ за­пи­ши­те слова (со­че­та­ния слов) по по­ряд­ку, без до­пол­ни­тель­ных сим­во­лов.

1
Тип 16 № 1702
i

Вставь­те в пред­ло­же­ние про­пу­щен­ные слова (со­че­та­ния слов), ис­поль­зуя ин­фор­ма­цию из тек­ста.

 

Ко­ли­че­ство еже­се­кунд­ных сцин­тил­ля­ций, вы­зы­ва­е­мых ___________________, ис­пус­ка­е­мы­ми яд­ра­ми вис­му­та, при уда­ле­нии от ис­точ­ни­ка, рас­по­ло­жен­но­го в воз­ду­хе, ___________________ вплоть до рас­сто­я­ний в 5,75 см от ис­точ­ни­ка из­лу­че­ний.

 

В ответ за­пи­ши­те слова (со­че­та­ния слов) по по­ряд­ку, без до­пол­ни­тель­ных сим­во­лов.


2

На ри­сун­ке при­ве­де­ны кри­вые иони­за­ции α-ча­стиц, ис­пу­щен­ных 210Po, в воз­ду­хе. В опыте М. Кюри кри­вые I и II были по­лу­че­ны для про­бе­га α-ча­стиц при двух раз­ных плот­но­стях воз­ду­ха. Ка­ко­во было со­от­но­ше­ние плот­но­стей воз­ду­ха  дробь: чис­ли­тель: \rho_I, зна­ме­на­тель: \rho_II конец дроби ?


3
Тип 18 № 1704
i

М. Кюри опи­сы­ва­ла сле­ду­ю­щий опыт: если в тем­но­те пла­стин­ку, по­кры­тую сер­ни­стым цин­ком, при­бли­жать к ра­дио­ак­тив­но­му изо­то­пу по­ло­ния (210Po), пре­тер­пе­ва­ю­ще­му α-рас­пад, то она на­чи­на­ет све­тить­ся, когда рас­сто­я­ние между ней и ис­точ­ни­ком со­став­ля­ет 3,9 см. Ка­ко­ва мак­си­маль­ная длина про­бе­га α-ча­стиц, ис­пу­щен­ных этим изо­то­пом по­ло­ния? Ответ по­яс­ни­те.


3
Тип 16 № 2088
i

Фо­то­лю­ми­нес­цен­ция

Све­то­вая волна, па­да­ю­щая на тело, ча­стич­но от­ра­жа­ет­ся от него, ча­стич­но про­хо­дит на­сквозь, ча­стич­но по­гло­ща­ет­ся. Часто энер­гия по­глощённой све­то­вой волны це­ли­ком пе­ре­хо­дит во внут­рен­нюю энер­гию ве­ще­ства, что про­яв­ля­ет­ся в на­гре­ва­нии тела. Од­на­ко из­вест­ная часть этой по­глощённой энер­гии может вы­звать и дру­гие яв­ле­ния: фо­то­элек­три­че­ский эф­фект, фо­то­хи­ми­че­ские пре­вра­ще­ния, фо­то­лю­ми­нес­цен­цию.

Так, не­ко­то­рые тела при осве­ще­нии не толь­ко от­ра­жа­ют часть па­да­ю­ще­го на них света, но и сами на­чи­на­ют све­тить­ся. Такое све­че­ние, или фо­то­лю­ми­нес­цен­ция, от­ли­ча­ет­ся важ­ной осо­бен­но­стью: свет лю­ми­нес­цен­ции имеет иной спек­траль­ный со­став, чем свет, вы­звав­ший све­че­ние (см. рис.). На­блю­де­ния по­ка­зы­ва­ют, что свет лю­ми­нес­цен­ции ха­рак­те­ри­зу­ет­ся бо́льшей дли­ной волны, чем воз­буж­да­ю­щий свет. Это пра­ви­ло носит на­зва­ние пра­ви­ла Сток­са в честь ан­глий­ско­го фи­зи­ка Ге­ор­га Сток­са (1819—1903). Ве­ще­ства, об­ла­да­ю­щие ярко вы­ра­жен­ной спо­соб­но­стью лю­ми­нес­ци­ро­вать, на­зы­ва­ют­ся лю­ми­но­фо­ры.

Ри­су­нок 1. Опыты по фо­то­лю­ми­нес­цен­ции: 1: – ис­точ­ник света (фо­нарь); 2 – све­то­фильтр; 3 – сосуд с ве­ще­ством (Про­пу­стим, на­при­мер, свет от фо­на­ря через фи­о­ле­то­вое стек­ло, за­дер­жи­ва­ю­щее прак­ти­че­ски все го­лу­бые и более длин­ные волны. Если пучок фи­о­ле­то­во­го света на­пра­вить на кол­боч­ку, в ко­то­рой со­дер­жит­ся рас­твор флю­о­рес­це­и­на, то освещённая жид­кость на­чи­на­ет ярко лю­ми­нес­ци­ро­вать зелёно-жёлтым све­том)

Све­че­ние ве­ще­ства (лю­ми­нес­цен­ция) свя­за­но с пе­ре­хо­да­ми ато­мов и мо­ле­кул с выс­ших энер­ге­ти­че­ских уров­ней на низ­шие уров­ни. Лю­ми­нес­цен­ции долж­но пред­ше­ство­вать воз­буж­де­ние ато­мов и мо­ле­кул ве­ще­ства. При фо­то­лю­ми­нес­цен­ции воз­буж­де­ние про­ис­хо­дит под дей­стви­ем ви­ди­мо­го или уль­тра­фи­о­ле­то­во­го из­лу­че­ния.

Не­ко­то­рые тела со­хра­ня­ют спо­соб­ность све­тить­ся не­ко­то­рое время после того, как осве­ще­ние их пре­кра­ти­лось. Такое по­сле­све­че­ние может иметь раз­лич­ную дли­тель­ность. В не­ко­то­рых объ­ек­тах оно про­дол­жа­ет­ся очень малое время (де­ся­ти­ты­сяч­ные доли се­кун­ды и мень­ше), и для его на­блю­де­ния тре­бу­ют­ся осо­бые при­спо­соб­ле­ния. В дру­гих оно тя­нет­ся много се­кунд и даже минут (часов), так что его на­блю­де­ние не пред­став­ля­ет ни­ка­ких труд­но­стей. При­ня­то на­зы­вать све­че­ние, пре­кра­ща­ю­ще­е­ся вме­сте с осве­ще­ни­ем, флю­о­рес­цен­ци­ей, а све­че­ние, име­ю­щее за­мет­ную дли­тель­ность,  — фос­фо­рес­цен­ци­ей.

Лю­ми­нес­цен­ция нашла при­ме­не­ние при из­го­тов­ле­нии ламп днев­но­го света. Воз­ни­ка­ю­щий в лампе, за­пол­нен­ной па­ра­ми ртути, га­зо­вый раз­ряд вы­зы­ва­ет элек­тро­лю­ми­нес­цен­цию паров ртути. В спек­тре из­лу­че­ния ртути име­ет­ся уль­тра­фи­о­ле­то­вое из­лу­че­ние с дли­ной волны 0,257 мкм, ко­то­рое, в свою оче­редь, воз­буж­да­ет фо­то­лю­ми­нес­цен­цию лю­ми­но­фо­ра, нанесённого на внут­рен­нюю сто­ро­ну сте­нок лампы и да­ю­ще­го ви­ди­мый свет. Из­ме­няя со­став лю­ми­но­фо­ра, можно из­го­тав­ли­вать лампы с тре­бу­е­мым спек­тром фо­то­лю­ми­нес­цен­ции. При сме­ще­нии мак­си­му­ма из­лу­че­ния в длин­но­вол­но­вую об­ласть ви­ди­мо­го спек­тра по­лу­ча­ют тёпло-белый (жел­то­ва­тый) свет, в ко­рот­ко­вол­но­вую  — хо­лод­но-белый (го­лу­бо­ва­тый) свет.

Вставь­те в пред­ло­же­ние про­пу­щен­ные слова (со­че­та­ния слов), ис­поль­зуя ин­фор­ма­цию из тек­ста.

 

Фи­о­ле­то­вое стек­ло про­пус­ка­ет лучи толь­ко _____________________ цвета. Если пучок та­ко­го света на­пра­вить на рас­твор флю­о­рес­це­и­на, то освещённая жид­кость на­чи­на­ет све­тить­ся _____________________ све­том.

 

В ответ за­пи­ши­те слова (со­че­та­ния слов) по по­ряд­ку, без до­пол­ни­тель­ных сим­во­лов.

1

Вставь­те в пред­ло­же­ние про­пу­щен­ные слова (со­че­та­ния слов), ис­поль­зуя ин­фор­ма­цию из тек­ста.

 

В лю­ми­нес­цент­ной лампе про­ис­хо­дит двой­ное пре­об­ра­зо­ва­ние энер­гии: элек­три­че­ская энер­гия пре­вра­ща­ет­ся в энер­гию ___________________ из­лу­че­ния паров ртути, ко­то­рая, в свою оче­редь, пре­вра­ща­ет­ся в энер­гию _____________________ лю­ми­но­фо­ра.


2

Кри­сталл флю­о­рес­ци­ру­ет в жёлтой части спек­тра. Какой(-ие) фильтр(ы)  — синий или крас­ный  — можно ис­поль­зо­вать для пе­ре­во­да кри­стал­ла в воз­буждённое со­сто­я­ние?


3
Тип 18 № 1723
i

На ри­сун­ке пред­став­ле­ны спек­тры из­лу­че­ния для двух лю­ми­нес­цент­ных ламп, из­лу­ча­ю­щих белый или зелёный свет. Какую из ламп нель­зя ис­поль­зо­вать для про­смот­ра цвет­ных ил­лю­стра­ций? Ответ по­яс­ни­те.


4
Тип 16 № 2803
i

Гамма-из­лу­че­ние

 

Гамма-из­лу­че­ние было от­кры­то в на­ча­ле XX в. при изу­че­нии ра­дио­ак­тив­но­го из­лу­че­ния радия. Гамма-из­лу­че­ние – ши­ро­кий диа­па­зон элек­тро­маг­нит­но­го спек­тра, по­сколь­ку он не огра­ни­чен со сто­ро­ны вы­со­ких энер­гий. Мяг­кое гамма-из­лу­че­ние с энер­ги­ей от 100 кэВ об­ра­зу­ет­ся при энер­ге­ти­че­ских пе­ре­хо­дах внут­ри атом­ных ядер. Более жёсткое, с энер­ги­ей от 10 МэВ,  — при ядер­ных ре­ак­ци­ях. Су­ще­ству­ют кос­ми­че­ские гамма-лучи, ко­то­рые почти пол­но­стью за­дер­жи­ва­ют­ся ат­мо­сфе­рой Земли, по­это­му на­блю­дать их можно толь­ко из кос­мо­са.

На ри­сун­ке  — фо­то­гра­фия неба в гамма-лучах с энер­ги­ей 100 МэВ. Обзор в диа­па­зо­не жёстко­го гамма-из­лу­че­ния вы­пол­нен кос­ми­че­ской гамма-об­сер­ва­то­ри­ей «Комп­тон», ко­то­рая была за­пу­ще­на по про­грам­ме NASA «Ве­ли­кие об­сер­ва­то­рии» и с 1991 по 2000 г. вела на­блю­де­ния в диа­па­зо­не от жёстко­го рент­ге­на до жёстко­го гамма-из­лу­че­ния. На фо­то­гра­фии отчётливо видна плос­кость Га­лак­ти­ки, где из­лу­че­ние фор­ми­ру­ет­ся в ос­нов­ном остат­ка­ми сверх­но­вых. Яркие ис­точ­ни­ки вдали от плос­ко­сти Га­лак­ти­ки имеют в ос­нов­ном вне­га­лак­ти­че­ское про­ис­хож­де­ние.

Гамма-кван­ты сверх­вы­со­ких энер­гий (от 100 ГэВ) рож­да­ют­ся при столк­но­ве­нии за­ря­жен­ных ча­стиц, разо­гнан­ных мощ­ны­ми элек­тро­маг­нит­ны­ми по­ля­ми кос­ми­че­ских объ­ек­тов или зем­ных уско­ри­те­лей эле­мен­тар­ных ча­стиц. В ат­мо­сфе­ре они раз­ру­ша­ют ядра ато­мов, по­рож­дая кас­ка­ды ча­стиц, ле­тя­щих с око­ло­све­то­вой ско­ро­стью. При тор­мо­же­нии эти ча­сти­цы ис­пус­ка­ют свет, ко­то­рый на­блю­да­ют с по­мо­щью спе­ци­аль­ных те­ле­ско­пов на Земле.

Где и как об­ра­зу­ют­ся гамма-лучи уль­тра­вы­со­ких энер­гий (от 100 ТэВ1), пока не впол­не ясно. Зем­ным тех­но­ло­ги­ям такие энер­гии не­до­ступ­ны. Самые энер­гич­ные на­блю­да­е­мые кван­ты (1020–1021 эВ), при­хо­дят из кос­мо­са край­не редко  — при­мер­но один квант в 100 лет на квад­рат­ный ки­ло­метр.

Гамма-кван­ты не­га­тив­но воз­дей­ству­ют на ор­га­низм че­ло­ве­ка и яв­ля­ют­ся му­та­ген­ным фак­то­ром. Об­ла­дая вы­со­кой про­ни­ка­ю­щей спо­соб­но­стью, они иони­зу­ют и раз­ру­ша­ют мо­ле­ку­лы, ко­то­рые, в свою оче­редь, на­чи­на­ют иони­зи­ро­вать сле­ду­ю­щую пор­цию мо­ле­кул. Про­ис­хо­дит транс­фор­ма­ция кле­ток и по­яв­ле­ние му­ти­ро­ван­ных кле­ток, ко­то­рые не спо­соб­ны ис­пол­нять воз­ло­жен­ные на них функ­ции.

Не­смот­ря на опас­ность таких лучей, их ис­поль­зу­ют в раз­лич­ных об­ла­стях, со­блю­дая не­об­хо­ди­мые меры за­щи­ты, на­при­мер для сте­ри­ли­за­ции про­дук­тов, об­ра­бот­ки ме­ди­цин­ско­го ин­стру­мен­та­рия и тех­ни­ки, кон­тро­ля над внут­рен­ним со­сто­я­ни­ем ряда из­де­лий, а также для куль­ти­ви­ро­ва­ния рас­те­ний. В по­след­нем слу­чае му­та­ции сель­ско­хо­зяй­ствен­ных куль­тур поз­во­ля­ют ис­поль­зо­вать их для вы­ра­щи­ва­ния на тер­ри­то­рии стран, из­на­чаль­но к этому не при­спо­соб­лен­ных. При­ме­ня­ют­ся гамма-лучи и при ле­че­нии раз­лич­ных он­ко­ло­ги­че­ских за­бо­ле­ва­ний. Метод по­лу­чил на­зва­ние лу­че­вой те­ра­пии.

 

----------------------

1 1 ТэВ = 1012 эВ; 1 эВ = 1,6·10−19 Дж

Вставь­те в пред­ло­же­ние про­пу­щен­ные слова (со­че­та­ния слов), ис­поль­зуя ин­фор­ма­цию из тек­ста.

 

Зем­ные ор­га­низ­мы за­щи­ще­ны от воз­дей­ствия кос­ми­че­ских гамма-кван­тов, так как они за­дер­жи­ва­ют­ся _________________. Для на­блю­де­ния этого гамма-из­лу­че­ния ис­поль­зу­ют гамма-те­ле­ско­пы, рас­по­ло­жен­ные _______________________.

 

В ответ за­пи­ши­те слова (со­че­та­ния слов) по по­ряд­ку, без до­пол­ни­тель­ных сим­во­лов.

1
Тип 17 № 2804
i

Энер­гия кван­та опре­де­ля­ет­ся по фор­му­ле E = . Оце­ни­те ча­сто­ту гамма-из­лу­че­ния, об­ра­зу­ю­ще­го­ся при энер­ге­ти­че­ских пе­ре­хо­дах внут­ри атом­ных ядер. Счи­тай­те, что энер­гия пе­ре­хо­да равна 100 кэВ. Ответ при­ве­ди­те в гер­цах с точ­но­стью до целых, раз­де­лив его на 1019.


2
Тип 18 № 2805
i

По­че­му гамма из­лу­че­ние ис­поль­зу­ют для сте­ри­ли­за­ции про­дук­тов и ме­ди­цин­ских ин­стру­мен­тов?


5
Тип 16 № 2839
i

Гамма-из­лу­че­ние

 

Гамма-из­лу­че­ние было от­кры­то в на­ча­ле XX в. при изу­че­нии ра­дио­ак­тив­но­го из­лу­че­ния радия. Гамма-из­лу­че­ние – ши­ро­кий диа­па­зон элек­тро­маг­нит­но­го спек­тра, по­сколь­ку он не огра­ни­чен со сто­ро­ны вы­со­ких энер­гий. Мяг­кое гамма-из­лу­че­ние с энер­ги­ей от 100 кэВ об­ра­зу­ет­ся при энер­ге­ти­че­ских пе­ре­хо­дах внут­ри атом­ных ядер. Более жёсткое, с энер­ги­ей от 10 МэВ,  — при ядер­ных ре­ак­ци­ях. Су­ще­ству­ют кос­ми­че­ские гамма-лучи, ко­то­рые почти пол­но­стью за­дер­жи­ва­ют­ся ат­мо­сфе­рой Земли, по­это­му на­блю­дать их можно толь­ко из кос­мо­са.

Гамма-кван­ты сверх­вы­со­ких энер­гий (от 100 ГэВ) рож­да­ют­ся при столк­но­ве­нии за­ря­жен­ных ча­стиц, разо­гнан­ных мощ­ны­ми элек­тро­маг­нит­ны­ми по­ля­ми кос­ми­че­ских объ­ек­тов или зем­ных уско­ри­те­лей эле­мен­тар­ных ча­стиц. В ат­мо­сфе­ре они раз­ру­ша­ют ядра ато­мов, по­рож­дая кас­ка­ды ча­стиц, ле­тя­щих с око­ло­све­то­вой ско­ро­стью. При тор­мо­же­нии эти ча­сти­цы ис­пус­ка­ют свет, ко­то­рый на­блю­да­ют с по­мо­щью спе­ци­аль­ных те­ле­ско­пов на Земле.

Где и как об­ра­зу­ют­ся гамма-лучи уль­тра­вы­со­ких энер­гий (от 100 ТэВ1), пока не впол­не ясно. Зем­ным тех­но­ло­ги­ям такие энер­гии не­до­ступ­ны. Самые энер­гич­ные на­блю­да­е­мые кван­ты (1020–1021 эВ), при­хо­дят из кос­мо­са край­не редко  — при­мер­но один квант в 100 лет на квад­рат­ный ки­ло­метр.

Гамма-кван­ты не­га­тив­но воз­дей­ству­ют на ор­га­низм че­ло­ве­ка и яв­ля­ют­ся му­та­ген­ным фак­то­ром. Об­ла­дая вы­со­кой про­ни­ка­ю­щей спо­соб­но­стью, они иони­зу­ют и раз­ру­ша­ют мо­ле­ку­лы, ко­то­рые, в свою оче­редь, на­чи­на­ют иони­зи­ро­вать сле­ду­ю­щую пор­цию мо­ле­кул. Про­ис­хо­дит транс­фор­ма­ция кле­ток и по­яв­ле­ние му­ти­ро­ван­ных кле­ток, ко­то­рые не спо­соб­ны ис­пол­нять воз­ло­жен­ные на них функ­ции.

Не­смот­ря на опас­ность таких лучей, их ис­поль­зу­ют в раз­лич­ных об­ла­стях, со­блю­дая не­об­хо­ди­мые меры за­щи­ты, на­при­мер для сте­ри­ли­за­ции про­дук­тов, об­ра­бот­ки ме­ди­цин­ско­го ин­стру­мен­та­рия и тех­ни­ки, кон­тро­ля над внут­рен­ним со­сто­я­ни­ем ряда из­де­лий, а также для куль­ти­ви­ро­ва­ния рас­те­ний. В по­след­нем слу­чае му­та­ции сель­ско­хо­зяй­ствен­ных куль­тур поз­во­ля­ют ис­поль­зо­вать их для вы­ра­щи­ва­ния на тер­ри­то­рии стран, из­на­чаль­но к этому не при­спо­соб­лен­ных. При­ме­ня­ют­ся гамма-лучи и при ле­че­нии раз­лич­ных он­ко­ло­ги­че­ских за­бо­ле­ва­ний. Метод по­лу­чил на­зва­ние лу­че­вой те­ра­пии.

 

----------------------

1 1 ТэВ = 1012 эВ; 1 эВ = 1,6·10−19 Дж

Вставь­те в пред­ло­же­ние про­пу­щен­ные слова (со­че­та­ния слов), ис­поль­зуя ин­фор­ма­цию из тек­ста.

 

Мяг­кое гамма-из­лу­че­ние об­ра­зу­ет­ся в про­цес­се энер­ге­ти­че­ских пе­ре­хо­дов ________________, а гамма-кван­ты с энер­ги­ей более 100 ги­га­элек­трон­вольт воз­ни­ка­ют при вза­и­мо­дей­ствии ________________________ в уско­ри­те­лях эле­мен­тар­ных ча­стиц.

 

В ответ за­пи­ши­те слова (со­че­та­ния слов) по по­ряд­ку, без до­пол­ни­тель­ных сим­во­лов.

1
Тип 17 № 2840
i

Энер­гия кван­та опре­де­ля­ет­ся по фор­му­ле E = . Опре­де­ли­те ча­сто­ту гамма-из­лу­че­ния, ко­то­рое по­рож­да­ет в ат­мо­сфе­ре Земли кас­ка­ды ча­стиц, ле­тя­щих со ско­ро­стя­ми, близ­ки­ми к ско­ро­сти света. Счи­тай­те, что энер­гия гамма-кван­тов равна пе­ре­хо­да равна 100 ГэВ. Ответ при­ве­ди­те в гер­цах с точ­но­стью до целых, раз­де­лив его на 1025.


2
Тип 18 № 2841
i

На одном из ме­ди­цин­ских сай­тов можно про­чи­тать: «При не­кон­тро­ли­ру­е­мом сти­хий­ном воз­дей­ствии на че­ло­ве­ка из­лу­че­ния из гамма-спек­тра по­след­ствия дают о себе знать не­ско­ро. Под­час об­лу­че­ние может "отыг­рать­ся" на сле­ду­ю­щем по­ко­ле­нии, не имея ви­ди­мых по­след­ствий для ро­ди­те­лей». Обос­нуй­те это утвер­жде­ние.


Пройти тестирование по этим заданиям