Электродинамика
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
Рентгеновское излучение
Рентгеновские лучи (первоначально названные Х-лучами) были открыты в 1895 г. немецким физиком Рентгеном. Открыв Х-лучи, Рентген тщательными опытами выяснил условия их образования. Он установил, что эти лучи возникают при торможении на веществе быстро летящих электронов. Исходя из этого обстоятельства, Рентген сконструировал и построил специальную трубку, удобную для получения рентгеновских лучей (см. рис. 1).
Рентгеновские трубки представляют собой стеклянные вакуумные баллоны с расположенными внутри электродами. Разность потенциалов на электродах нужна очень высокая — до сотен киловольт. На вольфрамовом катоде, подогреваемом током, происходит термоэлектронная эмиссия, то есть с него испускаются электроны, которые, ускоряясь электрическим полем, «бомбардируют» анод. В результате взаимодействия быстрых электронов с атомами анода рождаются фотоны рентгеновского диапазона.
Было установлено, что чем меньше длина волны рентгеновского излучения, тем больше проникающая способность лучей. Рентген назвал лучи с высокой проникающей способностью (слабо поглощающиеся веществом) жёсткими.
Различают тормозное и характеристическое рентгеновское излучение. Электроны могут, встречаясь с анодом, тормозиться, то есть терять энергию в электрических полях его атомов. Эта энергия излучается в виде рентгеновских фотонов. Такое излучение называется тормозным. Тормозное излучение содержит фотоны разных частот и, соответственно, длин волн. Поэтому спектр его является сплошным (непрерывным). Энергия излучаемого фотона не может превышать кинетическую энергию порождающего его электрона. Кинетическая же энергия электронов зависит от приложенной к электродам разности потенциалов.
Механизм получения характеристического излучения следующий. Быстрый электрон может проникнуть внутрь атома и выбить какой-либо электрон с одной из нижних орбиталей, то есть передать ему энергию, достаточную для преодоления потенциального барьера. Образовавшаяся в результате выбивания вакансия заполняется электроном с одного из вышележащих уровней. Занимая более низкий уровень, электрон излучает излишек энергии в форме кванта характеристического рентгеновского излучения. Наиболее быстрые электроны могут выбить электрон с K-оболочки, менее быстрые — с L-оболочки и т. д. (рис. 2а).
Электронная структура атома — это дискретный набор возможных энергетических состояний электронов. Поэтому рентгеновские фотоны, излучаемые в процессе замещения электронных вакансий, также могут иметь только строго определённые значения энергии, соответствующие разности уровней. Вследствие этого характеристическое рентгеновское излучение обладает спектром не сплошного, а линейчатого вида. Такой спектр позволяет характеризовать вещество анода — отсюда и название этих лучей. На рис. 2б показан характеристический спектр на фоне тормозного спектра.
Вставьте в предложение пропущенные слова (сочетания слов), используя информацию из текста.
Чем меньше ________________________________________ рентгеновского излучения, тем больше проникающая способность лучей. Рентгеновские лучи, которые слабо поглощаются при прохождении вещества, называются_____________________________.
В ответ запишите слова (сочетания слов) по порядку, без дополнительных символов.
Исследование поглощения инфракрасных лучей в XIX веке (по Дж. Тиндалю)
Открытие термо-ЭДС, возникающей при нагреве контакта двух разнородных металлов (термопары), сделало возможным исследование свойств инфракрасных лучей. Термоэлектрический датчик (последовательно соединённые термопары) при нагревании инфракрасными лучами вырабатывает ЭДС, измеряемую гальванометром. По отклонению стрелки судят о степени нагрева.
На рис. 1 показана схема исследования прозрачности твёрдых тел в XIX в. для инфракрасных лучей. Предполагалось, что воздух для этих лучей прозрачен. В качестве источника инфракрасных лучей использовались нагретое тело, пламя лампы и т. п. Известно, что, по закону Вина, с понижением температуры тела максимум излучения смещается в сторону длинных волн:
где b = 2897 мкм·К, T — температура тела в кельвинах.
В опыте исследуемая пластина толщиной l перекрывала отверстие диафрагмы. Оказалось, что прозрачные для видимого света лёд и стекло непрозрачны для тепловых лучей (см. таблицу). Горный хрусталь пропускает 6% излучения нагретой до 400 ºС меди и 3% излучения нагретой до 100 ºС меди. Таким образом, прозрачность хрусталя зависит от температуры излучающего тела. Длинноволновое излучение не проходит через стекло и лёд, а каменная соль для этого излучения прозрачна. По этой причине при изучении прозрачности газов кристаллы каменной соли использовались в качестве «окон» в цилиндре с исследуемым газом (рис. 2, торцы цилиндра АВ). Поглощающая способность газа зависит от давления. В опыте в предварительно откачанный цилиндр АВ (см. рис. 2) будем впускать этилен через кран Gʹ. Уберём экран Т, закрывающий зачернённый сажей куб С, наполненный кипящей водой. Результаты опытов по изучению поглощающей способности этилена и диэтилового эфира приведены на рис. 3.
Сильное поглощение тепловых лучей характерно и для ряда других газов. Так, непрозрачность паров воды и углекислого газа в атмосфере для инфракрасных лучей играет существенную роль в парниковом эффекте, наблюдаемом в XXI в.
Вставьте в предложение пропущенные слова, используя информацию из текста.
При понижении температуры излучателя инфракрасных волн доля излучения, поглощённая стеклом, ____________________. Стекло __________________ для излучения меди, нагретой до 100 ºС.
В ответ запишите слова (сочетания слов) по порядку, без дополнительных символов.
Цвет предметов
Вопрос о причине различной окраски тел занимал ум человека уже давно. Большое значение в понимании этого вопроса имели работы Ньютона (начавшиеся около 1666 г.) по разложению белого света в спектр (см. рис.).
Свет от фонаря освещает узкое прямоугольное отверстие S (щель). При помощи линзы L изображение щели получается на экране MN в виде узкого белого прямоугольника S'. Поместив на пути лучей призму Р, обнаружим, что изображение щели сместится и превратится в окрашенную полоску, переходы цветов в которой от красного к фиолетовому подобны наблюдаемым в радуге. Это радужное изображение Ньютон назвал спектром.
Рис. Наблюдение дисперсии света
В таблице приведены в качестве примера значения показателя преломления в зависимости от длины волны для двух сортов стекла и воды.
| Длина волны, нм (цвет) | Показатель преломления | ||
| Стекло, тяжёлый флинт | Стекло, лёгкий крон | Вода | |
| 656,3 (красный) | 1,6444 | 1,5145 | 1,3311 |
| 589,3 (жёлтый) | 1,6499 | 1,5170 | 1,3330 |
| 486,1 (голубой) | 1,6657 | 1,5230 | 1,3371 |
| 404,7 (фиолетовый) | 1,6852 | 1,5318 | 1,3428 |
Цвет окружающих нас предметов может быть различным благодаря тому, что световые волны разной длины в луче белого цвета рассеиваются, поглощаются и пропускаются предметами по-разному. Доля светового потока, участвующая в каждом из этих процессов, определяется с помощью соответствующих коэффициентов: отражения ρ, пропускания и поглощения α.
Если, например, у какого-либо тела для красного света коэффициент пропускания велик, коэффициент отражения мал, а для зелёного — наоборот, то это тело будет казаться красным в проходящем свете и зелёным в отражённом. Такими свойствами обладает, например, хлорофилл — вещество, содержащееся в листьях растений и обусловливающее их цвет. Раствор (вытяжка) хлорофилла в спирту оказывается на просвет красным, а на отражение — зелёным.
Для очень белого непрозрачного тела коэффициент отражения близок к единице для всех длин волн, а коэффициенты поглощения и пропускания очень малы. Прозрачное стекло имеет малые коэффициенты отражения и поглощения, а коэффициент пропускания близкий к единице для всех длин волн.
Различие в значениях коэффициентов и ρ и их зависимость от цвета (длины волны) падающего света обусловливают чрезвычайное разнообразие в цветах и оттенках различных тел.
Вставьте в предложение пропущенные слова, используя информацию из текста.
На рисунке показана схема опыта по разложению света в спектр с помощью __________________________________________________________. Согласно опыту в наибольшей степени преломляются _________________________________________.
В ответ запишите слова (сочетания слов) по порядку, без дополнительных символов.
Рентгеновское излучение
Рентгеновские лучи (первоначально названные Х-лучами) были открыты в 1895 г. немецким физиком Рентгеном. Открыв Х-лучи, Рентген тщательными опытами выяснил условия их образования. Он установил, что эти лучи возникают при торможении на веществе быстро летящих электронов. Исходя из этого обстоятельства, Рентген сконструировал и построил специальную трубку, удобную для получения рентгеновских лучей (см. рис. 1).
Рентгеновские трубки представляют собой стеклянные вакуумные баллоны с расположенными внутри электродами. Разность потенциалов на электродах нужна очень высокая — до сотен киловольт. На вольфрамовом катоде, подогреваемом током, происходит термоэлектронная эмиссия, то есть с него испускаются электроны, которые, ускоряясь электрическим полем, «бомбардируют» анод. В результате взаимодействия быстрых электронов с атомами анода рождаются фотоны рентгеновского диапазона.
Было установлено, что чем меньше длина волны рентгеновского излучения, тем больше проникающая способность лучей. Рентген назвал лучи с высокой проникающей способностью (слабо поглощающиеся веществом) жёсткими.
Различают тормозное и характеристическое рентгеновское излучение. Электроны могут, встречаясь с анодом, тормозиться, то есть терять энергию в электрических полях его атомов. Эта энергия излучается в виде рентгеновских фотонов. Такое излучение называется тормозным. Тормозное излучение содержит фотоны разных частот и, соответственно, длин волн. Поэтому спектр его является сплошным (непрерывным). Энергия излучаемого фотона не может превышать кинетическую энергию порождающего его электрона. Кинетическая же энергия электронов зависит от приложенной к электродам разности потенциалов.
Механизм получения характеристического излучения следующий. Быстрый электрон может проникнуть внутрь атома и выбить какой-либо электрон с одной из нижних орбиталей, то есть передать ему энергию, достаточную для преодоления потенциального барьера. Образовавшаяся в результате выбивания вакансия заполняется электроном с одного из вышележащих уровней. Занимая более низкий уровень, электрон излучает излишек энергии в форме кванта характеристического рентгеновского излучения. Наиболее быстрые электроны могут выбить электрон с K-оболочки, менее быстрые — с L-оболочки и т. д. (рис. 2а).
Электронная структура атома — это дискретный набор возможных энергетических состояний электронов. Поэтому рентгеновские фотоны, излучаемые в процессе замещения электронных вакансий, также могут иметь только строго определённые значения энергии, соответствующие разности уровней. Вследствие этого характеристическое рентгеновское излучение обладает спектром не сплошного, а линейчатого вида. Такой спектр позволяет характеризовать вещество анода — отсюда и название этих лучей. На рис. 2б показан характеристический спектр на фоне тормозного спектра.
Вставьте в предложение пропущенные слова (сочетания слов), используя информацию из текста.
В рентгеновской трубке при нагревании катода испускаются__________________, которые ускоряются в___________________________ до высоких энергий.
В ответ запишите слова (сочетания слов) по порядку, без дополнительных символов.
Исследование поглощения инфракрасных лучей в XIX веке (по Дж. Тиндалю)
Открытие термо-ЭДС, возникающей при нагреве контакта двух разнородных металлов (термопары), сделало возможным исследование свойств инфракрасных лучей. Термоэлектрический датчик (последовательно соединённые термопары) при нагревании инфракрасными лучами вырабатывает ЭДС, измеряемую гальванометром. По отклонению стрелки судят о степени нагрева.
На рис. 1 показана схема исследования прозрачности твёрдых тел в XIX в. для инфракрасных лучей. Предполагалось, что воздух для этих лучей прозрачен. В качестве источника инфракрасных лучей использовались нагретое тело, пламя лампы и т. п. Известно, что, по закону Вина, с понижением температуры тела максимум излучения смещается в сторону длинных волн:
где b = 2897 мкм·К, T — температура тела в кельвинах.
В опыте исследуемая пластина толщиной l перекрывала отверстие диафрагмы. Оказалось, что прозрачные для видимого света лёд и стекло непрозрачны для тепловых лучей (см. таблицу). Горный хрусталь пропускает 6% излучения нагретой до 400 ºС меди и 3% излучения нагретой до 100 ºС меди. Таким образом, прозрачность хрусталя зависит от температуры излучающего тела. Длинноволновое излучение не проходит через стекло и лёд, а каменная соль для этого излучения прозрачна. По этой причине при изучении прозрачности газов кристаллы каменной соли использовались в качестве «окон» в цилиндре с исследуемым газом (рис. 2, торцы цилиндра АВ). Поглощающая способность газа зависит от давления. В опыте в предварительно откачанный цилиндр АВ (см. рис. 2) будем впускать этилен через кран Gʹ. Уберём экран Т, закрывающий зачернённый сажей куб С, наполненный кипящей водой. Результаты опытов по изучению поглощающей способности этилена и диэтилового эфира приведены на рис. 3.
Сильное поглощение тепловых лучей характерно и для ряда других газов. Так, непрозрачность паров воды и углекислого газа в атмосфере для инфракрасных лучей играет существенную роль в парниковом эффекте, наблюдаемом в XXI в.
Вставьте в предложение пропущенные слова (сочетания слов), используя информацию из текста.
При повышении температуры излучателя инфракрасных волн доля излучения, поглощённая горным хрусталём, ____________________. Лёд __________________ для теплового излучения меди, нагретой до 100 ºС.
В ответ запишите слова (сочетания слов) по порядку, без дополнительных символов.
Пройти тестирование по этим заданиям

