физика–11
Окружающий мир–4
Обществознание–6
География–6
Английский язык–11
Физика–11
Химия–11
География–11
Немецкий язык–11
Французcкий язык
сайты - меню - вход - новости




Вариант № 49274



Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:1:30:00
1
Задание 17 № 704

Во сколько раз удельное объемное сопротивление трансформаторного масла больше фарфора?

 

Электроизоляционными называются вещества — диэлектрики, обладающие ничтожной электрической проводимостью, способные поляризоваться в электрическом поле . В них возможно длительное существование электростатического поля и накопление потенциальной электрической энергии. У электроизоляционных материалов желательны большое удельное объёмное сопротивление(четвертый столбец в таблице), высокое пробивную напряженность(второй столбец в таблице), малый тангенс диэлектрических потерь и малая диэлектрическая проницаемость(третий столбец в таблице). Важно, чтобы вышеперечисленные параметры были стабильны во времени и по температуре, а иногда и по частоте электрического поля.

Электроизоляционные материалы можно подразделить:

1. Газообразные

2. Жидкие

3. Твёрдые

По происхождению:

1. Природные неорганические

2. Искусственные неорганические

3. Естественные органические

4. Синтетические органические

Газообразные. У всех газообразных электроизоляционных материалов диэлектрическая проницаемость близка к 1 и тангенс диэлектрических потерь так же мал, зато мало и напряжение пробоя. Чаще всего в качестве газообразного изолятора используют воздух, однако в последнее время всё большее применение находит элегаз (гексафторид серы, SF6), обладающий почти втрое бо́льшим напряжением пробоя и значительно более высокой дугогасительной способностью. Иногда для изготовления электроизоляционных материалов применяют сочетание газообразных и органических материалов.

Жидкие — чаще всего используют в трансформаторах, выключателях, кабелях, вводах для электрической изоляции и в конденсаторах. Причём в трансформаторах эти диэлектрики являются одновременно и охлаждающими жидкостями, а в выключателях − и как дугогасящая среда. В качестве жидких диэлектрических материалов прежде всего используется трансформаторное масло, конденсаторное масло, касторовое масло, синтетические жидкости ( совтол ). Природные неорганические — наиболее распространённый материал слюда, она обладает гибкостью при сохранении прочности, хорошо расщепляется, что позволяет получить тонкие пластины. Химически стойка и нагревостойка. В качестве электроизоляционных материалов используют мусковит и флогопит, однако мусковит всё же лучше.

Искусственные неорганические: хорошим сопротивлением изоляции обладают малощелочные стёкла, стекловолокно, ситалл, но основным электроизоляционным материалом всё же является фарфор (полевошпатовая керамика). Эта керамика широко используется для изоляторов токонесущих проводов высокого напряжения, проходных изоляторов, бушингов и т. д. Однако из-за высокого тангенса диэлектрических потерь не годится для высокочастотных изоляторов. Для других более узких задач используется керамика — форстеритовая, глинозёмистая, кордиеритовая и т. д.

Естественные органические: в последнее время в связи с расширением производства синтетических электроизоляционных материалов их применение сокращается. Выделить можно следующие — целлюлоза, парафин, пек, каучук, янтарь и другие природные смолы, из жидких - касторовое масло.

Синтетические органические: большая часть данного материала приходится на долю высокомолекулярных химических соединений — пластмасс, а так же эластомеров. Существуют так же синтетические диэлектрические жидкости ( см. Совтол ).

Смолы при низких температурах — это аморфные стеклообразные массы. При нагреве они размягчаются и становятся пластичными, а затем жидкими. Смолы не гигроскопичны и не растворяются в воде, но растворяются в спирте и других растворителях. Смолы являются важнейшей составной частью многих лаков, компаундов, пластмасс, пленок. Природные смолы — это продукт жизнедеятельности некоторых насекомых (например, шеллак) или растений — смолоносов. Наибольшее значение имеют синтетические смолы, например полиэтилен, поливинилхлорид, которые применяются для изоляции проводов, кабелей, для защитных покрытий, для изготовления лаков.


Ответ:

2
Задание 18 № 705

Является ли шеллак диэлектриком? Ответ поясните.

 

Электроизоляционными называются вещества — диэлектрики, обладающие ничтожной электрической проводимостью, способные поляризоваться в электрическом поле . В них возможно длительное существование электростатического поля и накопление потенциальной электрической энергии. У электроизоляционных материалов желательны большое удельное объёмное сопротивление(четвертый столбец в таблице), высокое пробивную напряженность(второй столбец в таблице), малый тангенс диэлектрических потерь и малая диэлектрическая проницаемость(третий столбец в таблице). Важно, чтобы вышеперечисленные параметры были стабильны во времени и по температуре, а иногда и по частоте электрического поля.

Электроизоляционные материалы можно подразделить:

1. Газообразные

2. Жидкие

3. Твёрдые

По происхождению:

1. Природные неорганические

2. Искусственные неорганические

3. Естественные органические

4. Синтетические органические

Газообразные. У всех газообразных электроизоляционных материалов диэлектрическая проницаемость близка к 1 и тангенс диэлектрических потерь так же мал, зато мало и напряжение пробоя. Чаще всего в качестве газообразного изолятора используют воздух, однако в последнее время всё большее применение находит элегаз (гексафторид серы, SF6), обладающий почти втрое бо́льшим напряжением пробоя и значительно более высокой дугогасительной способностью. Иногда для изготовления электроизоляционных материалов применяют сочетание газообразных и органических материалов.

Жидкие — чаще всего используют в трансформаторах, выключателях, кабелях, вводах для электрической изоляции и в конденсаторах. Причём в трансформаторах эти диэлектрики являются одновременно и охлаждающими жидкостями, а в выключателях − и как дугогасящая среда. В качестве жидких диэлектрических материалов прежде всего используется трансформаторное масло, конденсаторное масло, касторовое масло, синтетические жидкости ( совтол ). Природные неорганические — наиболее распространённый материал слюда, она обладает гибкостью при сохранении прочности, хорошо расщепляется, что позволяет получить тонкие пластины. Химически стойка и нагревостойка. В качестве электроизоляционных материалов используют мусковит и флогопит, однако мусковит всё же лучше.

Искусственные неорганические: хорошим сопротивлением изоляции обладают малощелочные стёкла, стекловолокно, ситалл, но основным электроизоляционным материалом всё же является фарфор (полевошпатовая керамика). Эта керамика широко используется для изоляторов токонесущих проводов высокого напряжения, проходных изоляторов, бушингов и т. д. Однако из-за высокого тангенса диэлектрических потерь не годится для высокочастотных изоляторов. Для других более узких задач используется керамика — форстеритовая, глинозёмистая, кордиеритовая и т. д.

Естественные органические: в последнее время в связи с расширением производства синтетических электроизоляционных материалов их применение сокращается. Выделить можно следующие — целлюлоза, парафин, пек, каучук, янтарь и другие природные смолы, из жидких - касторовое масло.

Синтетические органические: большая часть данного материала приходится на долю высокомолекулярных химических соединений — пластмасс, а так же эластомеров. Существуют так же синтетические диэлектрические жидкости ( см. Совтол ).

Смолы при низких температурах — это аморфные стеклообразные массы. При нагреве они размягчаются и становятся пластичными, а затем жидкими. Смолы не гигроскопичны и не растворяются в воде, но растворяются в спирте и других растворителях. Смолы являются важнейшей составной частью многих лаков, компаундов, пластмасс, пленок. Природные смолы — это продукт жизнедеятельности некоторых насекомых (например, шеллак) или растений — смолоносов. Наибольшее значение имеют синтетические смолы, например полиэтилен, поливинилхлорид, которые применяются для изоляции проводов, кабелей, для защитных покрытий, для изготовления лаков.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Задание 5 № 710

Четыре металлических бруска (А, B, C, D) положили вплотную друг к другу, как показано на рисунке. Стрелки указывают направление теплопередачи от бруска к бруску. Температуры брусков в данный момент составляют 100 °С, 60 °С, 40 °С, 10 °С. Какой из брусков имеет температуру 60 °С?

 


Ответ:

4
Задание 2 № 599

Выберите два утверждения, которые верно описывают движение автомобиля, и запишите номера, под которыми они указаны:

 

1) Автомобиль не останавливался.

2) Автомобиль на 30 секунде своего пути остановился и поехал в обратном направлении.

3) Максимальный модуль ускорения автомобиля 2 м/с2.

4) Автомобиль с 10 секунд до 20 секунд двигался равноускоренно.

5) Максимальная скорость автомобиля была 50 км/ч.


Ответ:

5
Задание 3 № 900

Воздушный шар равномерно поднимается вверх. На основании какого (каких) закона (законов) осуществляется этот подъём? Изобразите графически силу (силы), действующую (действующие) на воздушный шар.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Задание 4 № 601

Про­чи­тай­те текст и вставь­те про­пу­щен­ные слова. Слова в от­ве­те могут по­вто­рять­ся.

1) полная механическая энергия

2) кинетическая энергия

3) полный импульс

 

Две летящих пули, сталкиваясь друг с другом, сцепляются. ____ системы сохраняется, ____ уменьшается. Если бы они оттолкнулись друг от друга, то ____ сохраняется.


Ответ:

7
Задание 5 № 817

В 1654 году Отто фон Герике провёл эксперимент: два медных полушария, полые внутри, прижимались друг к другу и с помощью насоса из них откачивался воздух. 8 пар лошадей с каждой стороны не могли разорвать эти полушария. Ниже предложены утверждения, которые относятся к данному эксперименту.

 

1) Полушария удерживались за счёт разницы давлений воздуха внутри и снаружи полушарий.

2) Полушария удерживались за счёт трения между собой.

3) Давление внутри полушарий было меньше атмосферного.

4) Давление внутри полушарий выше атмосферного давления.

5) Медные полушария соединили винтами друг с другом.

6) Медные полушария не были скреплены между собой.

 

Выберите из предложенного списка три верных утверждения и запишите их номера.


Ответ:

8
Задание 6 № 589

Выберете верные утверждения.

 

1) нейтрон положительно заряжен

2) нейтрон нейтрален

3) позитрон — это положительно заряженная бета-частица

4) электрон — это положительно заряженная бета-частица


Ответ:

9
Задание 7 № 890

Положительно заряженный электроскоп (1) соединили с незаряженным электроскопом (2) металлическим стержнем.

В результате эксперимента:

1) второй электроскоп останется незаряженным;

2) оба электроскопа зарядятся отрицательно;

3) первый электроскоп останется положительно заряженным, второй зарядится отрицательно;

4) оба электроскопа зарядятся положительно, у первого электроскопа уменьшится электрический заряд.


Ответ:

10
Задание 8 № 993

Мальчик на скейтборде, разогнавшись на горизонтальном участке скейтодрома до скорости 3 м/с, заехал на горку с углом наклона 17,5° Начиная от момента въезда он перестал отталкиваться и раскачивать скейтборд. Изобразите на графике зависимость скорости мальчика от времени в течение пяти секунд. (Трением пренебречь, ускорение свободного падения примите равным 10 м/с2.)


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

11
Задание 9 № 336

Рас­по­ло­жи­те виды элек­тро­маг­нит­ных волн, из­лу­ча­е­мых Солн­цем, в по­ряд­ке воз­рас­та­ния их ча­сто­ты. За­пи­ши­те в от­ве­те со­от­вет­ству­ю­щую по­сле­до­ва­тель­ность цифр.

1) видимый свет

2) гамма-излучение

3) ин­фра­крас­ное из­лу­че­ние


Ответ:

12
Задание 10 № 410

Скорость измеряют при помощи спидометра. Погрешность измерения скорости при помощи данного спидометра равна его цене деления.

Запишите в ответ показания спидометра в миль/ч (mph) с учётом погрешности измерений через точку с запятой. Например, если показания спидометра (51 ± 3) миль/ч, то в ответе следует записать «51;3».


Ответ:

13
Задание 11 № 986

Исследовалась зависимость напряжения на обкладках конденсатора от заряда этого конденсатора. Результаты измерений представлены в таблице. Погрешности измерений величин q и U равнялись соответственно 0,5 мкКл и 1 В. Чему примерно равна ёмкость конденсатора? (Ответ дайте в нФ с точностью до 50 нФ.)

 

 q, мкКл 

0

1

2

3

4

5

U, В

 0 

 8 

 22 

 34 

 38 

 52 


Ответ:

14
Задание 12 № 794

Вам необходимо исследовать, как меняется период колебаний пружинного маятника от жёсткости пружины. Имеется следующее оборудование:

 

1) секундомер электронный;

2) набор из 3 пружин;

3) набор из 5 грузов по 100 г;

4) штатив с муфтой и лапкой.

 

Опишите порядок проведения исследования. В ответе:

1. Зарисуйте или опишите экспериментальную установку.

2. Опишите порядок действий при проведении исследования.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 13 № 934

Установите соответствие между примерами и физическими явлениями, которые эти примеры иллюстрируют. Для каждого примера проявления физических явлений из первого столбца подберите соответствующее название физического явления из второго столбца.

 

 

 

ТЕХНИЧЕСКИЕ УСТРОЙСТВА   ФИЗИЧЕСКИЕ ЯВЛЕНИЯ

А) двигатель постоянного тока

Б) лампа накаливания

 

1) воздействие постоянных магнитов

2) действие магнитного поля на проводник с током

3) тепловое действие тока

4) химическое действие тока

 

Запишите в таблицу выбранные цифры под соответствующими буквами.

AБ
  

Ответ:

16
Задание 14 № 647

Какое физическое явление обуславливает работу конденсаторного микрофона?

 

Микрофон — электроакустический прибор, преобразующий акустические колебания в электрический сигнал. Принцип работы микрофона заключается в том, что давление звуковых колебаний воздуха, воды или твёрдого вещества действует на тонкую мембрану микрофона. В свою очередь, колебания мембраны возбуждают электрические колебания; в зависимости от типа микрофона для этого используются явление электромагнитной индукции, изменение ёмкости конденсаторов или пьезоэлектрический эффект. Динамический (электродинамический) микрофон — микрофон, сходный по конструкции с динамическим громкоговорителем. Он представляет собой мембрану, соединённую с проводником, который помещен в сильное магнитное поле, создаваемое постоянным магнитом. Колебания давления воздуха (звук) воздействуют на мембрану и приводят в движение проводник. Когда проводник пересекает силовые линии магнитного поля, в нём наводится ЭДС индукции. ЭДС индукции пропорциональна как амплитуде колебаний мембраны, так и частоте колебаний. В отличие от конденсаторных, динамические микрофоны не требуют фантомного питания. Также динамический микрофон делится на два типа по типу проводника: катушечный и ленточный. В электродинамическом микрофоне катушечного типа диафрагма соединена с катушкой, находящейся в кольцевом зазоре магнитной системы. При колебаниях диафрагмы под действием звуковой волны витки катушки пересекают магнитные силовые линии, и в катушке наводится переменная ЭДС. Такой микрофон надёжен в эксплуатации. В электродинамическом микрофоне ленточного типа вместо катушки в магнитном поле располагается гофрированная ленточка из алюминиевой фольги. Такой микрофон применяется главным образом в студиях звукозаписи.

Конденсаторный микрофон — микрофон, действие которого основано на использовании свойств электрического конденсатора (накопления заряда и энергии электрического поля). Используется в основном в студийной звукозаписи. Представляет собой конденсатор, одна из обкладок которого выполнена из эластичного материала (обычно — полимерная плёнка с нанесённой металлизацией). При звуковых колебаниях вибрации эластичной обкладки изменяют ёмкость конденсатора. Если конденсатор заряжен (подключён к источнику постоянного напряжения), то изменение ёмкости конденсатора приводит к изменению запасённого заряда и возникновению токов заряда, которые и являются полезным сигналом, поступающим с микрофона на усилитель. Для работы такого микрофона между обкладками должно быть приложено поляризующее напряжение, 50-60 вольт в более старых микрофонах, а в моделях после 1960—1970-х годов — 48 вольт. Такое напряжение питания считается стандартом, именно с таким фантомным питанием выпускаются предусилители и звуковые карты. Конденсаторный микрофон имеет очень высокое выходное сопротивление. В связи с этим, в непосредственной близости к микрофону (внутри его корпуса) располагают предусилитель с высоким (порядка 1 ГОм) входным сопротивлением, выполненный на электронной лампе или полевом транзисторе, который также обеспечивает балансное подключение микрофона к остальной звукоусиливающей аппаратуре. Как правило, напряжение для поляризации и питания предусилителя подаётся по сигнальным проводам (фантомное питание).

Пьезоэлектрические микрофоны — микрофоны, работающие на пьезоэлектрическом эффекте. При деформации пьезоэлектриков на их поверхности возникают электрические заряды, величина которых пропорциональна деформирующей силе. Пластинки из искусственно выращенных кристаллов служат основным рабочим элементом пьезоэлектрических микрофонов. По характеристикам пьезоэлектрические микрофоны уступают большинству конденсаторных и электродинамических микрофонов, однако в некоторых сферах подобные микрофоны всё же применяются, например в бюджетных или устаревших гитарных звукоснимателях.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 15 № 648

Микрофон — электроакустический прибор, преобразующий акустические колебания в электрический сигнал. Принцип работы микрофона заключается в том, что давление звуковых колебаний воздуха, воды или твёрдого вещества действует на тонкую мембрану микрофона. В свою очередь, колебания мембраны возбуждают электрические колебания; в зависимости от типа микрофона для этого используются явление электромагнитной индукции, изменение ёмкости конденсаторов или пьезоэлектрический эффект. Динамический (электродинамический) микрофон — микрофон, сходный по конструкции с динамическим громкоговорителем. Он представляет собой мембрану, соединённую с проводником, который помещен в сильное магнитное поле, создаваемое постоянным магнитом. Колебания давления воздуха (звук) воздействуют на мембрану и приводят в движение проводник. Когда проводник пересекает силовые линии магнитного поля, в нём наводится ЭДС индукции. ЭДС индукции пропорциональна как амплитуде колебаний мембраны, так и частоте колебаний. В отличие от конденсаторных, динамические микрофоны не требуют фантомного питания. Также динамический микрофон делится на два типа по типу проводника: катушечный и ленточный. В электродинамическом микрофоне катушечного типа диафрагма соединена с катушкой, находящейся в кольцевом зазоре магнитной системы. При колебаниях диафрагмы под действием звуковой волны витки катушки пересекают магнитные силовые линии, и в катушке наводится переменная ЭДС. Такой микрофон надёжен в эксплуатации. В электродинамическом микрофоне ленточного типа вместо катушки в магнитном поле располагается гофрированная ленточка из алюминиевой фольги. Такой микрофон применяется главным образом в студиях звукозаписи.

Конденсаторный микрофон — микрофон, действие которого основано на использовании свойств электрического конденсатора (накопления заряда и энергии электрического поля). Используется в основном в студийной звукозаписи. Представляет собой конденсатор, одна из обкладок которого выполнена из эластичного материала (обычно — полимерная плёнка с нанесённой металлизацией). При звуковых колебаниях вибрации эластичной обкладки изменяют ёмкость конденсатора. Если конденсатор заряжен (подключён к источнику постоянного напряжения), то изменение ёмкости конденсатора приводит к изменению запасённого заряда и возникновению токов заряда, которые и являются полезным сигналом, поступающим с микрофона на усилитель. Для работы такого микрофона между обкладками должно быть приложено поляризующее напряжение, 50-60 вольт в более старых микрофонах, а в моделях после 1960—1970-х годов — 48 вольт. Такое напряжение питания считается стандартом, именно с таким фантомным питанием выпускаются предусилители и звуковые карты. Конденсаторный микрофон имеет очень высокое выходное сопротивление. В связи с этим, в непосредственной близости к микрофону (внутри его корпуса) располагают предусилитель с высоким (порядка 1 ГОм) входным сопротивлением, выполненный на электронной лампе или полевом транзисторе, который также обеспечивает балансное подключение микрофона к остальной звукоусиливающей аппаратуре. Как правило, напряжение для поляризации и питания предусилителя подаётся по сигнальным проводам (фантомное питание).

Пьезоэлектрические микрофоны — микрофоны, работающие на пьезоэлектрическом эффекте. При деформации пьезоэлектриков на их поверхности возникают электрические заряды, величина которых пропорциональна деформирующей силе. Пластинки из искусственно выращенных кристаллов служат основным рабочим элементом пьезоэлектрических микрофонов. По характеристикам пьезоэлектрические микрофоны уступают большинству конденсаторных и электродинамических микрофонов, однако в некоторых сферах подобные микрофоны всё же применяются, например в бюджетных или устаревших гитарных звукоснимателях.

 

Выберите из предложенного перечня два верных утверждения и запишите номера, под которыми они указаны.

 

1. По характеристикам пьезоэлектрические микрофоны лучше конденсаторных и электродинамических микрофонов 2. Пластинки из искусственно выращенных кристаллов служат основным рабочим элементом динамических микрофонов.

3. Принцип работы микрофона заключается в том, что давление звуковых колебаний воздуха, воды или твёрдого вещества действует на тонкую мембрану микрофона.

4. в непосредственной близости к конденсаторному микрофону (внутри его корпуса) располагают предусилитель с высоким (порядка 1 ГОм) входным сопротивлением, выполненный на электронной лампе или полевом транзисторе.


Ответ:

18
Задание 16 № 523

По таблице определите при росте длины волны, какой показатель электромагнитной волны уменьшается?


Показать текст


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:1:30:00
Завершить тестирование, свериться с ответами, увидеть решения; если работа задана учителем, она будет ему отправлена.