СДАМ ГИА: РЕШУ ВПР
Образовательный портал для подготовки к работам
Физика для 11 класса
физика–11
сайты - меню - вход - новости




Поиск
'


Всего: 27    1–20 | 21–27
Задание 17 № 686

Во сколько раз показатель теплового объемного расширения ацетона больше показателя уксусной кислоты? Ответ запишите с точностью до второго знака после запятой.

 

Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое. Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела). Молекулы жидкости не имеют определённого положения, но в то же время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии. Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твердое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние — стекло), выше — в газообразное (происходит испарение). Границы этого интервала зависят от давления. В таблице приведены термодинамические показатели некоторых жидкостей; β — коэффициент объемного теплового расширения.

 

ВеществоФормула кг/м3 атмс, Дж/(г ċ К)
Анилин102 (15)−618442652,42,15685
Ацетон792−9556,5235472,18143
Бензол8975,580,1290,550,11,72122
Вода998,201003742184,1421
Глицерин1260202902,4347
Метиловый спирт792,8−93,961,124078,72,39119
Нитробензол1173,2 (25)5,9210,91,419
Сероуглерод1293−11146,3275771
Спирт этиловый789,3−11778,5243,563,12,51108
Толуол867−95,0110,6320,641,61,616 (0)107
Углерод четырёххлористый1595−2376,7283,145122
Уксусная кислота104916,7118321,657,2260 (1—8)107
Фенол107340,1181,741960,5
Хлороформ1498,5 (15)−63,56126054,90,96
Эфир этиловый714−11634,5193,835,52,34163

 

Твсп — важный показатель пожарной опасности жидкости. По ней все жидкости разделяются на классы:

 

1 класс — температура вспышки до 28оС в закрытом тигле (ацетальдегид, бензол, гексан, диэтиловый эфир, изопропиловый спирт).

2 класс — температура вспышки от 29 до 61оС (бутиловый спирт, кумол, стирол).

Жидкости 1 и 2 классов относятся к ЛВЖ (легковоспламеняющиеся жидкости).

3 класс — температура вспышки от 62 до 120оС (анилин, этиленгликоль).

4 класс — температура вспышки выше 120оС (глицерин, трансформаторное масло).

Жидкости 3 и 4 классов относятся к ГЖ (горючая жидкость).

Температура воспламенения — наименьшая температура вещества, при которой в условиях специальных испытаний вещество выделяет горючие пары и газы с такой скоростью, что после их зажигания возникает устойчивое пламенное горение.

Пусковые жидкости — это вспомогательные средства, позволяющие улучшить воспламеняемость топлив. Необходимость в них может возникнуть в холодное время года при недостаточной испаряемости бензина или неудовлетворительных теплофизических свойствах горючей смеси дизельного топлива с воздухом. Пусковые жидкости вводятся в топливо при помощи специальных устройств. Наиболее удобны аэрозольные баллоны, из которых смесь распыливается на воздушный фильтр. В двигателях, использующих бензин и дизельное топливо, принцип действия пусковых жидкостей различен. Проблема возникающая при холодном пуске бензинового двигателя, заключается в недостаточной испаряемости бензина при низкой температуре, в результате чего состав образующейся горючей смеси далек от оптимального. Из-за этого продолжительность пуска возрастает. Это приводит к повышению пусковых износов, росту расхода топлива и увеличению эмиссии токсичных продуктов неполного сгорания, характерных для пускового периода. Если концентрация бензина в горючей смеси ниже нижнего концентрационного предела воспламенения (КПВ), то смесь вообще не воспламенится. Поэтому в основу составов для пуска холодных карбюраторных двигателей входят легколетучие жидкости с широкими КПВ.

Источник: РЕШУ ВПР: Вариант для подготовки 20.
Раздел кодификатора ФИПИ: 3.5 Строение и свойства жидкостей и твёрдых тел

Задание 17 № 506

Во сколько раз давление водяного пара при 40 градусах больше давления водяного пара при 0 градусах? Округлите до целых значений.

 

Насыщенный пар — это пар , находящийся в термодинамическом равновесии с жидкостью или твёрдым телом того же состава .

Давление насыщенного пара связано определённой для данного вещества зависимостью от температуры . Когда внешнее давление падает ниже давления насыщенного пара, происходит кипение (жидкости) или возгонка (твёрдого тела); когда оно выше — напротив, конденсация или десублимация . Для воды и многих других веществ, имеющих твердую фазу, существует значительная разница в давлении насыщенных паров над поверхностью жидкости и твердой фазы.

Над поверхностью жидкости всегда есть пары этой жидкости, которые образуются из-за ее испарения. За счет диффузии часть молекул пара возвращается обратно в жидкость. Если число частиц, покидающих жидкость за единицу времени, больше числа частиц, возвращающихся в жидкость за тот же промежуток времени, то пар называется ненасыщенным. Если число частиц, покидающих жидкость за единицу времени, равно числу частиц, возвращающихся в жидкость за тот же промежуток времени, то пар называется насыщенным. При этом говорят, что пар находится в динамическом равновесии со своей жидкостью. Такая ситуация возможна, если, например, ограничить объем над поверхностью воды. Тогда испарение может происходить только до определенного предела.

Если пар жидкости стал насыщенным, то большей концентрации молекул (значит, и давления) насыщенного пара при той же температуре достичь нельзя. Это означает, что давление насыщенного пара имеет единственное значение, зависящее только от его температуры. Если объем, занимаемый насыщенным паром, начать уменьшать при постоянной температуре, то пар начнет конденсироваться в жидкость, так как концентрация его частиц и давление достигли предельного значения.

 

В таблице приведены следующие свойства насыщенного водяного пара в зависимости от температуры: давление, удельный объем, плотность, удельные энтальпии жидкости и пара, теплота парообразования.

 

Пересчет в СИ: 1 кгс/см2 = 9.81·104 Па.

 

Температура,
Давление (абсолютное),
кгс/см3
Удельный объём,
м3/кг
Плотность,
кг/м3
Удельная энтапилия
жидкости
кДж/кг
Удельная энтапилия
пара
кДж/кг
Удельная теплота
парообразования r,
кДж/кг
00,0062206,50,0048402493,12493,1
50,0089147,10,006820,952502,72481,7
100,0125106,40,009441,92512,32470,4
150,017477,90,0128362,852522,42459,5
200,023857,80,0172983,825322448,2
250,032343,40,02304104,752541,72436,9
300,043332,930,03036125,72551,32425,6
350,057325,250,0396146,6525612414,3
400,075219,550,05114167,62570,62403
450,097715,280,06543188,552579,82391,3
500,125812,0540,083209,52589,52380
550,16059,5890,1043230,452598,72368,2
600,20317,6870,1301251,42608,32356,9
650,2556,2090,1611272,352617,52345,2
700,31775,0520,1979293,32626,32333
750,3934,1390,2416314,326362321
800,4833,4140,2929335,226442310
850,592,8320,3531356,226532297
900,7152,3650,4229377,126622285
950,8621,9850,5039398,126712273
Источник: РЕШУ ВПР: Вариант для подготовки 23.
Раздел кодификатора ФИПИ: 1.1 Научные методы познания окружающего мира, 3.5 Строение и свойства жидкостей и твёрдых тел

Задание 17 № 668

Во сколько раз показатель теплового объемного расширения этилового эфира больше показателя глицерина? Ответ запишите с точностью до второго знака после запятой.

 

Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое. Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела). Молекулы жидкости не имеют определённого положения, но в то же время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии. Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твердое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние — стекло), выше — в газообразное (происходит испарение). Границы этого интервала зависят от давления. В таблице приведены термодинамические показатели некоторых жидкостей. β - это коэффициент объемного теплового расширения.

 

ВеществоФормула кг/м3 атмс, Дж/(г ċ К)
Анилин102 (15)−618442652,42,15685
Ацетон792−9556,5235472,18143
Бензол8975,580,1290,550,11,72122
Вода998,201003742184,1421
Глицерин1260202902,4347
Метиловый спирт792,8−93,961,124078,72,39119
Нитробензол1173,2 (25)5,9210,91,419
Сероуглерод1293−11146,3275771
Спирт этиловый789,3−11778,5243,563,12,51108
Толуол867−95,0110,6320,641,61,616 (0)107
Углерод четырёххлористый1595−2376,7283,145122
Уксусная кислота104916,7118321,657,2260 (1—8)107
Фенол107340,1181,741960,5
Хлороформ1498,5 (15)−63,56126054,90,96
Эфир этиловый714−11634,5193,835,52,34163

 

Твсп – важный показатель пожарной опасности жидкости. По ней все жидкости разделяются на классы:

 

1 класс — температура вспышки до 28оС в закрытом тигле (ацетальдегид, бензол, гексан, диэтиловый эфир, изопропиловый спирт).

2 класс — температура вспышки от 29 до 61оС (бутиловый спирт, кумол, стирол).

Жидкости 1 и 2 классов относятся к ЛВЖ (легковоспламеняющиеся жидкости).

3 класс — температура вспышки от 62 до 120оС (анилин, этиленгликоль).

4 класс — температура вспышки выше 120оС (глицерин, трансформаторное масло).

Жидкости 3 и 4 классов относятся к ГЖ (горючая жидкость).

Температура воспламенения — наименьшая температура вещества, при которой в условиях специальных испытаний вещество выделяет горючие пары и газы с такой скоростью, что после их зажигания возникает устойчивое пламенное горение.

Пусковые жидкости — это вспомогательные средства, позволяющие улучшить воспламеняемость топлив. Необходимость в них может возникнуть в холодное время года при недостаточной испаряемости бензина или неудовлетворительных теплофизических свойствах горючей смеси дизельного топлива с воздухом. Пусковые жидкости вводятся в топливо при помощи специальных устройств. Наиболее удобны аэрозольные баллоны, из которых смесь распыливается на воздушный фильтр. В двигателях, использующих бензин и дизельное топливо, принцип действия пусковых жидкостей различен. Проблема возникающая при холодном пуске бензинового двигателя, заключается в недостаточной испаряемости бензина при низкой температуре, в результате чего состав образующейся горючей смеси далек от оптимального. Из-за этого продолжительность пуска возрастает. Это приводит к повышению пусковых износов, росту расхода топлива и увеличению эмиссии токсичных продуктов неполного сгорания, характерных для пускового периода. Если концентрация бензина в горючей смеси ниже нижнего концентрационного предела воспламенения (КПВ), то смесь вообще не воспламенится. Поэтому в основу составов для пуска холодных карбюраторных двигателей входят легколетучие жидкости с широкими КПВ.

Источник: РЕШУ ВПР: Вариант для подготовки 19.
Раздел кодификатора ФИПИ: 3.5 Строение и свойства жидкостей и твёрдых тел

Задание 17 № 596

Найдите по таблице два металла с гексагональной и гранецентрированной упаковкой с близкими температурами плавления (максимальное отличие 8 градусов). Посчитайте отношение их коэффициентов линейного расширения. Значение запишите с точностью до второго знака после запятой.


Показать

Источник: РЕШУ ВПР: Вариант для подготовки 15.
Раздел кодификатора ФИПИ: 3.5 Строение и свойства жидкостей и твёрдых тел

Задание 13 № 718

Установите соответствие между примерами и физическими явлениями, которые эти при-меры иллюстрируют. Для каждого примера проявления физических явлений из первого столбца подберите соответствующее название физического явления из второго столбца.

 

ПРИМЕРЫ   ФИЗИЧЕСКИЕ ЯВЛЕНИЯ

А) если в один сок налить другой, то они смешаются

Б) образование росы

 

1) магнитные свойства металлов

2) конденсация

3) вещество поглощает излучение в разных частях видимого спектра

4) диффузия

 

Запишите в таблицу выбранные цифры под соответствующими буквами.

AБ
  
Источник: РЕШУ ВПР: Вариант для подготовки 22.
Раздел кодификатора ФИПИ: 3.1 Возникновение атомистической гипотезы строения вещества, 3.5 Строение и свойства жидкостей и твёрдых тел

Задание 17 № 470

По таблице определите во сколько раз динамическая вязкость тяжелой воды больше динамической вязкости бензина. Округлите до первого знака после запятой.


Показать

Источник: РЕШУ ВПР: Вариант для подготовки 9.
Раздел кодификатора ФИПИ: 1.1 Научные методы познания окружающего мира, 3.5 Строение и свойства жидкостей и твёрдых тел

Задание 13 № 574

Установите соответствие между примерами и физическими явлениями, которые эти при-меры иллюстрируют. Для каждого примера проявления физических явлений из первого столбца подберите соответствующее название физического явления из второго столбца.

 

ПРИМЕРЫ   ФИЗИЧЕСКИЕ ЯВЛЕНИЯ

А) наличие приливов в море

Б) пар от кипящей воды

 

1) магнитные свойства металлов

2) гравитация Луны

3) вещество поглощает излучение в разных частях видимого спектра

4) переход из жидкого состояния в газообразное

 

Запишите в таблицу выбранные цифры под соответствующими буквами.

AБ
  
Источник: РЕШУ ВПР: Вариант для подготовки 14.
Раздел кодификатора ФИПИ: 2.4 Всемирное тяготение, закон всемирного тяготения, 3.5 Строение и свойства жидкостей и твёрдых тел

Задание 13 № 592

Установите соответствие между примерами и физическими явлениями, которые эти при-меры иллюстрируют. Для каждого примера проявления физических явлений из первого столбца подберите соответствующее название физического явления из второго столбца.

 

ПРИМЕРЫ   ФИЗИЧЕСКИЕ ЯВЛЕНИЯ

А) свет от лампочки освещает комнату

Б) если подержать в руках холодную воду с холодильника, то она станет температуры тела

 

1) гравитация Земли

2) более теплые тела нагревают более холодные

3) гравитация Луны

4) распространение света в атмосфере

 

Запишите в таблицу выбранные цифры под соответствующими буквами.

AБ
  
Источник: РЕШУ ВПР: Вариант для подготовки 15.
Раздел кодификатора ФИПИ: 3.5 Строение и свойства жидкостей и твёрдых тел, 4.6 Электромагнитные волны. Волновые свойства света

Задание 5 № 351

Выберете верные утверждения.

На картинке приведен график зависимости температуры вещества от полученного им количества теплоты. Перед тем, как тело начали нагревать, оно находилось в твердом состоянии.

 

1) На участке графика от 0 до 300 кДж тело нагревается.

2) На участке графика от 0 до 300 кДж тело плавится.

3) На участке графика от 300 до 1050 кДж тело нагревается.

4) На участке графика от 300 до 1050 кДж тело плавится.

5) На участке графика от 1050 до 1250 кДж тело нагревается.

6) На участке графика от 1050 до 1250 кДж тело плавится.

Источник: РЕШУ ВПР: Вариант для подготовки 3.
Раздел кодификатора ФИПИ: 3.2 Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества, 3.5 Строение и свойства жидкостей и твёрдых тел

Задание 5 № 369

Выберете верные утверждения.

На картинке приведен график зависимости температуры вещества от полученного им количества теплоты. Перед тем, как тело начали нагревать, оно находилось в жидком состоянии.

1) На участ­ке гра­фи­ка от 0 до 300 кДж тело на­гре­ва­ет­ся.

2) На участ­ке гра­фи­ка от 0 до 300 кДж тело испаряется.

3) На участ­ке гра­фи­ка от 300 до 1050 кДж тело на­гре­ва­ет­ся.

4) На участ­ке гра­фи­ка от 300 до 1050 кДж тело испаряется.

5) На участ­ке гра­фи­ка от 1050 до 1250 кДж тело на­гре­ва­ет­ся.

6) На участ­ке гра­фи­ка от 1050 до 1250 кДж тело испаряется.

Источник: РЕШУ ВПР: Вариант для подготовки 4.
Раздел кодификатора ФИПИ: 3.5 Строение и свойства жидкостей и твёрдых тел

Задание 17 № 650

Во сколько раз абсолютное значение температуры плавления брома меньше абсолютного значения температуры плавления водорода?

 

Ковалентная связь (от лат. co — «совместно» и vales — «имеющий силу») — химическая связь, образованная перекрытием (обобществлением) пары валентных электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой. Термин "ковалентная связь" был впервые введён лауреатом Нобелевской премии Ирвингом Ленгмюром в 1919 году. Этот термин относился к химической связи, обусловленной совместным обладанием электронами, в отличие от металлической связи, в которой электроны были свободными, или от ионной связи, в которой один из атомов отдавал электрон и становился катионом, а другой атом принимал электрон и становился анионом.

Характерные свойства ковалентной связи — направленность, насыщаемость, полярность, поляризуемость — определяют химические и физические свойства соединений.

Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы. Углы между двумя связями называют валентными.

Насыщаемость — способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные (неполярные — двухатомная молекула состоит из одинаковых атомов (H2, Cl2, N2) и электронные облака каждого атома распределяются симметрично относительно этих атомов; полярные — двухатомная молекула состоит из атомов разных химических элементов, и общее электронное облако смещается в сторону одного из атомов, образуя тем самым асимметрию распределения электрического заряда в молекуле, порождая дипольный момент молекулы).

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам. Таблица иллюстрирует свойства веществ с ковалентной неполярной связью.

 

ВеществоХимическая формулаОтносительная молекулярная
масса
Водород (г)2−253−259
Азот (г)28−196−210
Кислород (г)32−183−219
Фтор (г)38−188−220
Озон (г)48−112−193
Хлор (г)71−34−101
Бром (ж)160+59−7
Источник: РЕШУ ВПР: Вариант для подготовки 18.
Раздел кодификатора ФИПИ: 3.5 Строение и свойства жидкостей и твёрдых тел

Задание 17 № 632

Во сколько раз абсолютное значение температуры кипения фтора (в К) меньше абсолютного значения температуры кипения хлора (в К)? Округлите до второго знака после запятой.


Показать

Источник: РЕШУ ВПР: Вариант для подготовки 17.
Раздел кодификатора ФИПИ: 3.2 Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества, 3.5 Строение и свойства жидкостей и твёрдых тел

Задание 13 № 466

Установите соответствие между примерами и физическими явлениями, которые эти при-меры иллюстрируют. Для каждого примера проявления физических явлений из первого столбца подберите соответствующее название физического явления из второго столбца.

 

ПРИМЕРЫ   ФИЗИЧЕСКИЕ ЯВЛЕНИЯ

А) свечение метеорита в атмосфере земли

Б) если подержать в руках холодную воду с холодильника, то она станет температуры тела

 

1) теплопередача

2) сила трения в атмосфере

3) скопление в воздухе в нижних слоях атмосферы ледяных кристалликов

4) переход веществ из жидкого состояния в твердое

 

Запишите в таблицу выбранные цифры под соответствующими буквами.

AБ
  
Источник: РЕШУ ВПР: Вариант для подготовки 9.
Раздел кодификатора ФИПИ: 3.5 Строение и свойства жидкостей и твёрдых тел, 3.6 Первый закон термодинамики

Задание 13 № 538

Установите соответствие между примерами и физическими явлениями, которые эти при-меры иллюстрируют. Для каждого примера проявления физических явлений из первого столбца подберите соответствующее название физического явления из второго столбца.

 

ПРИМЕРЫ   ФИЗИЧЕСКИЕ ЯВЛЕНИЯ

А) работа ветряных мельниц

Б) образование росы

 

1) магнитные свойства металлов

2) переход механической энергии в тепловую

3) вещество поглощает излучение в разных частях видимого спектра

4) конденсация

 

Запишите в таблицу выбранные цифры под соответствующими буквами.

AБ
  
Источник: РЕШУ ВПР: Вариант для подготовки 12.
Раздел кодификатора ФИПИ: 2.6 Законы сохранения в механике: кинетическая энергия, 3.5 Строение и свойства жидкостей и твёрдых тел

Задание 17 № 704

Во сколько раз удельное объемное сопротивление трансформаторного масла больше фарфора?

 

Электроизоляционными называются вещества — диэлектрики, обладающие ничтожной электрической проводимостью, способные поляризоваться в электрическом поле . В них возможно длительное существование электростатического поля и накопление потенциальной электрической энергии. У электроизоляционных материалов желательны большое удельное объёмное сопротивление(четвертый столбец в таблице), высокое пробивную напряженность(второй столбец в таблице), малый тангенс диэлектрических потерь и малая диэлектрическая проницаемость(третий столбец в таблице). Важно, чтобы вышеперечисленные параметры были стабильны во времени и по температуре, а иногда и по частоте электрического поля.

Электроизоляционные материалы можно подразделить:

1. Газообразные

2. Жидкие

3. Твёрдые

По происхождению:

1. Природные неорганические

2. Искусственные неорганические

3. Естественные органические

4. Синтетические органические

Газообразные. У всех газообразных электроизоляционных материалов диэлектрическая проницаемость близка к 1 и тангенс диэлектрических потерь так же мал, зато мало и напряжение пробоя. Чаще всего в качестве газообразного изолятора используют воздух, однако в последнее время всё большее применение находит элегаз (гексафторид серы, SF6), обладающий почти втрое бо́льшим напряжением пробоя и значительно более высокой дугогасительной способностью. Иногда для изготовления электроизоляционных материалов применяют сочетание газообразных и органических материалов.

Жидкие — чаще всего используют в трансформаторах, выключателях, кабелях, вводах для электрической изоляции и в конденсаторах. Причём в трансформаторах эти диэлектрики являются одновременно и охлаждающими жидкостями, а в выключателях − и как дугогасящая среда. В качестве жидких диэлектрических материалов прежде всего используется трансформаторное масло, конденсаторное масло, касторовое масло, синтетические жидкости ( совтол ). Природные неорганические — наиболее распространённый материал слюда, она обладает гибкостью при сохранении прочности, хорошо расщепляется, что позволяет получить тонкие пластины. Химически стойка и нагревостойка. В качестве электроизоляционных материалов используют мусковит и флогопит, однако мусковит всё же лучше.

Искусственные неорганические: хорошим сопротивлением изоляции обладают малощелочные стёкла, стекловолокно, ситалл, но основным электроизоляционным материалом всё же является фарфор (полевошпатовая керамика). Эта керамика широко используется для изоляторов токонесущих проводов высокого напряжения, проходных изоляторов, бушингов и т. д. Однако из-за высокого тангенса диэлектрических потерь не годится для высокочастотных изоляторов. Для других более узких задач используется керамика — форстеритовая, глинозёмистая, кордиеритовая и т. д.

Естественные органические: в последнее время в связи с расширением производства синтетических электроизоляционных материалов их применение сокращается. Выделить можно следующие — целлюлоза, парафин, пек, каучук, янтарь и другие природные смолы, из жидких - касторовое масло.

Синтетические органические: большая часть данного материала приходится на долю высокомолекулярных химических соединений — пластмасс, а так же эластомеров. Существуют так же синтетические диэлектрические жидкости ( см. Совтол ).

 

ДиэлектрикEпр,
104 В/см
ερ v,
Ом · м
Бумага, пропитанная маслом100—2503,6
Воздух301
Гетинакс100—1504—7108—1010
Миканит150—4005—6109—1011
Поливинилхлорид3253,21012
Резина150—2003—61011—1012
Стекло100—1506—101012
Слюда500—10005,45 · 1011
Совол1505,31011—1012
Трансформаторное масло50—1802—2,55 · 1012—5 · 1013
Фарфор150—2005,51012—1013
Электрокартон80—1203—5106—108

 

Смолы при низких температурах — это аморфные стеклообразные массы. При нагреве они размягчаются и становятся пластичными, а затем жидкими. Смолы не гигроскопичны и не растворяются в воде, но растворяются в спирте и других растворителях. Смолы являются важнейшей составной частью многих лаков, компаундов, пластмасс, пленок. Природные смолы — это продукт жизнедеятельности некоторых насекомых (например, шеллак) или растений — смолоносов. Наибольшее значение имеют синтетические смолы, например полиэтилен, поливинилхлорид, которые применяются для изоляции проводов, кабелей, для защитных покрытий, для изготовления лаков.

Источник: РЕШУ ВПР: Вариант для подготовки 21.
Раздел кодификатора ФИПИ: 3.5 Строение и свойства жидкостей и твёрдых тел

Задание 17 № 722

Во сколько раз удельное объемное сопротивление стекла больше удельного объемного сопротивления слюды?

 

Электроизоляционными называются вещества — диэлектрики, обладающие ничтожной электрической проводимостью, способные поляризоваться в электрическом поле. В них возможно длительное существование электростатического поля и накопление потенциальной электрической энергии. У электроизоляционных материалов желательны большое удельное объёмное сопротивление (четвертый столбец в таблице), высокое пробивную напряженность (второй столбец в таблице), малый тангенс диэлектрических потерь и малая диэлектрическая проницаемость (третий столбец в таблице). Важно, чтобы вышеперечисленные параметры были стабильны во времени и по температуре, а иногда и по частоте электрического поля.

Электроизоляционные материалы можно подразделить:

1. Газообразные

2. Жидкие

3. Твёрдые

По происхождению:

1. Природные неорганические

2. Искусственные неорганические

3. Естественные органические

4. Синтетические органические

Газообразные. У всех газообразных электроизоляционных материалов диэлектрическая проницаемость близка к 1 и тангенс диэлектрических потерь так же мал, зато мало и напряжение пробоя. Чаще всего в качестве газообразного изолятора используют воздух, однако в последнее время всё большее применение находит элегаз (гексафторид серы, SF6), обладающий почти втрое бо́льшим напряжением пробоя и значительно более высокой дугогасительной способностью. Иногда для изготовления электроизоляционных материалов применяют сочетание газообразных и органических материалов.

Жидкие — чаще всего используют в трансформаторах, выключателях, кабелях, вводах для электрической изоляции и в конденсаторах. Причём в трансформаторах эти диэлектрики являются одновременно и охлаждающими жидкостями, а в выключателях − и как дугогасящая среда. В качестве жидких диэлектрических материалов прежде всего используется трансформаторное масло, конденсаторное масло, касторовое масло, синтетические жидкости ( совтол ). Природные неорганические — наиболее распространённый материал слюда, она обладает гибкостью при сохранении прочности, хорошо расщепляется, что позволяет получить тонкие пластины. Химически стойка и нагревостойка. В качестве электроизоляционных материалов используют мусковит и флогопит, однако мусковит всё же лучше.

Искусственные неорганические: хорошим сопротивлением изоляции обладают малощелочные стёкла, стекловолокно, ситалл, но основным электроизоляционным материалом всё же является фарфор (полевошпатовая керамика). Эта керамика широко используется для изоляторов токонесущих проводов высокого напряжения, проходных изоляторов, бушингов и т. д. Однако из-за высокого тангенса диэлектрических потерь не годится для высокочастотных изоляторов. Для других более узких задач используется керамика — форстеритовая, глинозёмистая, кордиеритовая и т. д.

Естественные органические: в последнее время в связи с расширением производства синтетических электроизоляционных материалов их применение сокращается. Выделить можно следующие — целлюлоза, парафин, пек, каучук, янтарь и другие природные смолы, из жидких - касторовое масло.

Синтетические органические: большая часть данного материала приходится на долю высокомолекулярных химических соединений — пластмасс, а так же эластомеров. Существуют так же синтетические диэлектрические жидкости (см. Совтол).

 

ДиэлектрикEпр,
104 В/см
ερ v,
Ом · м
Бумага, пропитанная маслом100—2503,6
Воздух301
Гетинакс100—1504—7108—1010
Миканит150—4005—6109—1011
Поливинилхлорид3253,21012
Резина150—2003—61011—1012
Стекло100—1506—101012
Слюда500—10005,45 · 1011
Совол1505,31011—1012
Трансформаторное масло50—1802—2,55 · 1012—5 · 1013
Фарфор150—2005,51012—1013
Электрокартон80—1203—5106—108

 

Смолы при низких температурах — это аморфные стеклообразные массы. При нагреве они размягчаются и становятся пластичными, а затем жидкими. Смолы не гигроскопичны и не растворяются в воде, но растворяются в спирте и других растворителях. Смолы являются важнейшей составной частью многих лаков, компаундов, пластмасс, пленок. Природные смолы — это продукт жизнедеятельности некоторых насекомых (например, шеллак) или растений — смолоносов. Наибольшее значение имеют синтетические смолы, например полиэтилен, поливинилхлорид, которые применяются для изоляции проводов, кабелей, для защитных покрытий, для изготовления лаков.

Источник: РЕШУ ВПР: Вариант для подготовки 22.
Раздел кодификатора ФИПИ: 3.5 Строение и свойства жидкостей и твёрдых тел

Задание 13 № 484

Установите соответствие между примерами и физическими явлениями, которые эти при-меры иллюстрируют. Для каждого примера проявления физических явлений из первого столбца подберите соответствующее название физического явления из второго столбца.

 

ПРИМЕРЫ   ФИЗИЧЕСКИЕ ЯВЛЕНИЯ

А) вода замерзает в морозилке

Б) предмет, скользящий по столу через время остановится

 

1) теплопередача

2) сила трения между предметами

3) скопление в воздухе в нижних слоях атмосферы ледяных кристалликов

4) переход веществ из одного агрегатного состояния в другое

 

Запишите в таблицу выбранные цифры под соответствующими буквами.

AБ
  
Источник: РЕШУ ВПР: Вариант для подготовки 10.
Раздел кодификатора ФИПИ: 2.6 Законы сохранения в механике: кинетическая энергия, 3.5 Строение и свойства жидкостей и твёрдых тел

Задание 13 № 502

Установите соответствие между примерами и физическими явлениями, которые эти примеры иллюстрируют. Для каждого примера проявления физических явлений из первого столбца подберите соответствующее название физического явления из второго столбца.

 

ПРИМЕРЫ   ФИЗИЧЕСКИЕ ЯВЛЕНИЯ

А) дно в воде кажется ближе, чем на самом деле

Б) туман в холодную погоду

 

1) диффузия

2) переход механической энергии в тепловую

3) преломление света в воде

4) скопление в воздухе в нижних слоях атмосферы ледяных кристалликов

 

Запишите в таблицу выбранные цифры под соответствующими буквами.

AБ
  
Источник: РЕШУ ВПР: Вариант для подготовки 23.
Раздел кодификатора ФИПИ: 3.5 Строение и свойства жидкостей и твёрдых тел, 4.6 Электромагнитные волны. Волновые свойства света

Задание 13 № 736

Установите соответствие между примерами и физическими явлениями, которые эти примеры иллюстрируют. Для каждого примера проявления физических явлений из первого столбца подберите соответствующее название физического явления из второго столбца.

 

ПРИМЕРЫ   ФИЗИЧЕСКИЕ ЯВЛЕНИЯ

А) воск от свечи остывает, если свеча не горит

Б) гидроэлектростанции вырабатывают электричество

 

1) диффузия

2) переход механической энергии в тепловую

3) переход веществ из жидкого состояния в твердое

4) распространение света в атмосфере

 

Запишите в таблицу выбранные цифры под соответствующими буквами.

AБ
  
Источник: РЕШУ ВПР: Вариант для подготовки 24.
Раздел кодификатора ФИПИ: 3.5 Строение и свойства жидкостей и твёрдых тел, 4.5 Явление электромагнитной индукции

Задание 8 № 929

Воду, первоначальная температура которой равна 25 °С, нагревают на плитке неизменной мощности. Для нагревания воды до температуры кипения потребовалась энергия, равная 100 кДж. Далее на кипение воды было затрачено 40 кДж. Изобразите описанные процессы на графике зависимости температуры воды от полученной энергии.

Источник: Демонстрационная версия ВПР по физике 11 класс 2018 год.
Раздел кодификатора ФИПИ: 3.5 Строение и свойства жидкостей и твёрдых тел
Всего: 27    1–20 | 21–27